
J. Fluid Mech. (2007), vol. 579, pp. 173–226. c© 2007 Cambridge University Press

doi:10.1017/S0022112007004880 Printed in the United Kingdom

173
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Electric conduction from an electrolyte solution into a charge selective solid, such
as ion exchange membrane or electrode, becomes unstable when the electrolyte
concentration near the interface approaches zero owing to diffusion limitation. The
sequence of events leading to instability is as follows: upon the decrease of the
interface concentration, the electric double layer at the interface transforms from
its common quasi-equilibrium structure to a different, non-equilibrium one. The key
feature of this new structure is an extended space charge added to the usual one of
the quasi-equilibrium electric double layer. The non-equilibrium electro-osmotic slip
related to this extended space charge renders the quiescent conductance unstable. A
unified asymptotic picture of the electric double-layer undercurrent, encompassing
all regimes from quasi-equilibrium to the extreme non-equilibrium one, is developed
and employed for derivation of a universal electro-osmotic slip formula. This formula
is used for a linear stability study of quiescent electric conduction, yielding the
precise parameter range of instability, compared with that in the full electroconvective
formulation. The physical mechanism of instability is traced both kinematically, in
terms of non-equilibrium electro-osmotic slip, and dynamically, in terms of forces
acting in the electric double layer.

1. Introduction
In our previous studies of ionic conduction from an electrolyte solution into a

charge selective planar solid, such as ion exchange membrane or electrode, we found
that this conduction becomes unstable when the electrolyte concentration near the
interface approaches zero owing to diffusion limitation (Rubinstein & Zaltzman 2000,
2001, 2003; Rubinstein, Zaltzman & Lerman 2005; Rubinstein et al. 2002). The
sequence of events leading to instability is as follows: upon the decrease of the
interface concentration, the electric double layer (EDL) at the interface transforms
from its common quasi-equilibrium structure to a different, non-equilibrium one. The
key feature of this new structure is an extended space charge added to the usual
one of the quasi-equilibrium EDL. The non-equilibrium electro-osmosis related to
this extended space charge renders the quiescent conductance unstable. As a result, a
macroscopic vortical electroconvective flow develops which destroys the diffusion layer
at the solid/liquid interface. This development, reminiscent of Rayleigh–Bénard and
Marangoni instabilities in thermal conduction, may prove useful for intensification
of ionic mass transport near the electrodes, design of electrokinetic micro-pumps and
desalination by electrodialysis.
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Historically, the term electroconvection has been used in at least four different
contexts. Thus, this term often refers to the electric-field-induced flow of nematic
liquid crystals (Nasumo & Kai 1991; Rehberg, Horner & Hartung 1991; Winkler
et al. 1991). The same term relates to the flow of liquid dielectrics caused by the
action of an electric field on the space charge of ions of the appropriate sign injected
into a low quantity into the fluid (see Schneider & Watson 1970; Castellanos &
Velarde 1981; Perez & Castellanos 1989). This term is also applied to the effects of
an electric field acting on the surface charge accumulated at the interface between
two weakly conducting fluids. This mode of electroconvection has been studied by
Taylor (1966), who in the mid 1960s introduced the leaky dielectric model to explain
the behaviour of droplets deformed by a steady field. This model, extensively used
by Melcher (1981), later formed an important step in the construction of a unified
treatment of electrohydrodynamics of liquid dielectrics (see Saville 1997).

As opposed to the aforementioned systems, herein (following Grigin 1985;
Bruinsma & Alexander 1990; Rubinstein 1991; Baygents & Baldessari 1998; Chen
et al. 2005; Posner & Santiago 2006), we use the term electroconvection to refer
to the flow of strong electrolytes at moderate concentration, that is, to liquids
containing many charge carriers of both signs. This type of electroconvection has
been invoked, in particular, as a mechanism crucial for over-limiting conductance
through cation-exchange electrodialysis membranes (see Rubinstein & Zaltzman
2000) and important for ramified electrodeposition (see Fleury, Chazalviel & Rosso
1993; Fleury, Kaufman & Hibbert 1994; Livermore & Wong 1994) and layering of
colloid crystals on electrode surfaces (see Trau, Saville & Aksay 1996, 1997).

The following two modes of electroconvection in strong electrolytes may be
distinguished. The first is the relatively recently invoked ‘bulk’ electroconvection,
due to the volume electric forces acting on a macroscopic scale in a locally quasi-
electroneutral electrolyte (see Grigin 1985, 1992; Bruinsma & Alexander 1990;
Rubinstein, Zaltzman & Zaltzman 1995; Baygents & Baldessari 1998; Buchanan &
Saville 1999; Alexandrov, Grigin & Davydov 2002; Lerman, Rubinstein & Zaltzman
2005). The second is the common electro-osmosis, either of the classical ‘first’ kind
or of the ‘second’ kind, according to Dukhin’s terminology (see Dukhin 1991).
Electro-osmosis of the ‘first’ kind (see Dukhin & Derjaguin 1976; Zholkovskij,
Vorotyntsev & Staude 1996; Bazant & Squires 2004a, b) relates to the electrolyte
slip resulting from the action of the tangential electric field upon the space
charge of a quasi-equilibrium EDL. (The notion of ‘induced-charge’ electro-osmosis
(Bazant & Squires 2004a, b; Bazant, Thornton & Ajdari 2004) refers to the dependence
of the potential drop across quasi-equilibrium EDL, governing the electro-osmotic
flow rate, on the applied electric field as opposed to the classical view in which this
drop is regarded as a material constant.) Electro-osmosis of the ‘second’ kind invoked
by Dukhin (see Dukhin & Mishchuk 1989; Dukhin, Mishchuk & Takhistov 1989;
Mishchuk, Gonzalez-Caballero & Takhistov 2001; Ben & Chang 2002) pertains to
the similar action of a tangential electric field upon the extended space charge of the
non-equilibrium EDL.

In our previous studies, we developed the theory of non-equilibrium electro-osmotic
slip of this kind, valid for extreme non-equilibrium conditions, and showed that this
slip causes instability of the quiescent passage of a d.c. electric current from an
electrolyte solution into a planar charge selective solid (see Rubinstein & Zaltzman
2000, 2001, 2003; Rubinstein et al. 2002, 2005). This instability was of a singular
short-wave type: the marginal stability curve in the control parameter (voltage)
versus wavenumber plane did not have a minimum, whereas the linear growth rate
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increased indefinitely upon the increase of the wavenumber. This suggested the
need to look for a regularized formulation and a wavenumber selection criterion.
Inclusion of higher-order terms in the limiting formulation provided the necessary
regularization (see Rubinstein & Zaltzman 2003). Rubinstein et al. (2005) compared
linear stability results for the leading-order electro-osmotic formulations with those
for the full electroconvective formulation. Developing a universal theory of electro-
osmotic slip, uniformly valid for both equilibrium and non-equilibrium conditions,
the latter not necessarily of the extreme type considered previously, is the central goal
of the present study. Possessing such a theory will allow us to determine the precise
parameter ranges of instability of quiescent conduction and to study the resulting
nonlinear electroconvective flow. (From our preliminary studies we know that in such
a flow which is difficult for direct numerical simulations, quasi-equilibrium and non-
equilibrium sections of the interface alternate, rendering the universal slip condition
indispensable.)

An experimental test of the electro-osmotic origin of overlimiting conductance is
described in Rubinstein et al. (2002). In these experiments, a thin fluid layer near the
interface was immobilized by an aqueous uncharged solid (cross-linked poly-methyl-
alcohol) thus, eliminating electro-osmosis. As a result, overlimiting conductance
disappeared.

Our presentation is organized as follows. In § 2, we formulate the general
electroconvection problem and review various limiting electro-osmotic formulations.
In § 3, we develop a unified description of EDL undercurrent, valid for all regimes
from quasi-equilibrium to the extreme non-equilibrium one. In § 4, we employ this
description for derivation of a universally valid electro-osmotic slip formula. Next, in
§ 5, we employ this formula to study the linear stability of quiescent ionic conduction
(concentration polarization). In § 6, we compare these linear stability results for the
limiting slip formulation with those for the full electroconvection problem and show
that the universal slip formula yields a neutral stability curve close to that in the
full formulation. Finally, in § 7, we discuss the physical mechanism of the described
non-equilibrium electro-osmotic instability.

2. Two types of electroconvection in concentration polarization
The prototypical two-dimensional model problem for ionic conduction in a layer

of a univalent electrolyte flanked by two ideally permselective cation-exchange
membranes under the passage of a normal electric current (from right to left) in
the dimensionless form are given below (see Rubinstein 1990; Rubinstein & Zaltzman
2001) (tiltes are used for the dimensional variables, as opposed to their dimensionless
counterparts, see figure 1 for the geometry).

Equations {−∞ <x < ∞, 0 <y < 1}
∂c+

∂t
+ Pe(v · ∇)c+ =

D + 1

2
∇ · (∇c+ + c+∇ϕ), (2.1)

∂c−

∂t
+ Pe(v · ∇)c− =

D + 1

2D
∇ · (∇c− − c−∇ϕ), (2.2)

ε2�ϕ = c− − c+, (2.3)

1

Sc

∂v

∂t
= −∇p + �ϕ∇ϕ + �v, (2.4)

∇ · v = 0. (2.5)
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Figure 1. Sketch of the geometry of the problem.

The Nernst–Planck equations (2.1) and (2.2) describe convective electrodiffusion
of cations and anions, respectively. Equation (2.3) is the Poisson equation for the
electric potential, where c+ − c− on the right-hand side is the space charge due to a
local imbalance of ionic concentrations. The Stokes equation (2.4) is obtained from
the full momentum equation by omitting the nonlinear inertia terms. Finally, (2.5) is
the continuity equation for an incompressible solution. Spatial variables in (2.1)–(2.5)
have been non-dimensionalized with the layer thickness L whereas

t =
t̃D0

L2
, c+ =

c̃+

c0
, c− =

c̃−

c0
, ϕ =

F ϕ̃

RT

are, respectively, the dimensionless time, concentrations of cations and anions and
the electric potential, with c0 being the typical concentration, e.g. average anion
concentration in the layer, F the Faraday constant, R the universal gas constant, T

the absolute temperature and the ‘salt’ diffusivity D0 defined as

D0 =
2D+D−

D+ + D−

where D+ and D− are the cationic and anionic diffusivities, respectively. Furthermore,
v and p in (2.4), (2.5) are the dimensionless velocity vector and pressure, defined as

v = ṽ/v0 = uî + w ĵ , p = p̃/p0,

with the typical velocity v0 and pressure p0 determined from the force balance in the
dimensional version of the momentum equation (2.4) as:

v0 =
d(RT/F )2

4πηL
, p0 =

ηv0

L
,

where d is the dielectric constant of the solution and η is the dynamic viscosity of the
fluid. Below, we list and discuss the dimensionless parameters in the system (2.1)–(2.5).
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(i) The dimensionless Debye length ε is defined as

ε =
(dRT )1/2

2F (πc0)1/2
. (2.6)

ε2 lies in the range 2 × 10−13 < ε2 < 2 × 10−5, for a realistic macroscopic system with
10−4 <L( cm) < 10−1, 10−4 < c0(mol) < 1.

(ii) The Péclet number Pe is defined as

Pe = v0L/D0,

or, substituting v0,

Pe =

(
RT

F

)2
d

4πηD0

. (2.7)

From (2.7), Pe does not depend on c0, L and for a typical aqueous low molecular
electrolyte is of order unity (more precisely, Pe � 0.5).

(iii) Sc is the Schmidt number defined as

Sc = ν/D0.

Here ν is the kinematic viscosity of the fluid.
(iv) The relative cationic diffusivity D is defined as

D = D+/D−.

Boundary conditions

y = 0 (cathode membrane’s surface)(
∂c−

∂y
− c− ∂ϕ

∂y

)∣∣∣∣
y=0

= 0. (2.8)

Condition (2.8) states impermeability for anions of an ideally permselective cation
exchange membrane.

c+|y=0 = p1. (2.9)

This condition, prescribing interface concentration equal to that of the fixed charges
inside the membrane (p1), is asymptotically valid for p1 � 1 and amounts to
disregarding the co-ion invasion of an ideally permselective membrane and the
presence of an O

(
ε/

√
p1

)
thick boundary layer on the membrane side of the interface

ϕ|y=0 = −V. (2.10)

This condition, valid for the so-called potentiostatic operation, specifies a value V

(voltage) potential drop between the membranes; V is the control parameter in our
treatment.

v|y=0 = 0. (2.11)

This is the common non-slip condition.
y = 1 (anode membrane’s surface)(

∂c−

∂y
− c− ∂ϕ

∂y

)∣∣∣∣
y=1

= 0, c+|y=1 = p1, ϕ|y=1 = 0, v|y=1 = 0. (2.12a−d )
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Conditions (2.12a–d ) are analogous to (2.8)–(2.11). Conditions (2.8)–(2.12a–d ) are
complemented by

lim
l→∞

1

2l

∫ l

−l

∫ 1

0

c−(x, y) dy dx = 1, (2.13)

specifying the number of anions in the system. When time-dependent situations
are addressed, boundary-value problem (2.1)–(2.5), (2.8)–(2.13) is supplemented by a
suitable set of initial conditions.

The boundary-value problem (2.1)–(2.5), (2.8)–(2.13) possesses a one-dimensional
quiescent conduction solution with v =0, and c+, c− and ϕ satisfying the relations

d

dy

(
dc+

dy
+ c+ dϕ

dy

)
= 0,

d

dy

(
dc−

dy
− c− dϕ

dy

)
= 0, (2.14a, b)

ε2 d2ϕ

dy2
= c− − c+, (2.15)

(
dc−

dy
− c− dϕ

dy

)∣∣∣∣
y=0,1

= 0, c+|y=0,1 = p1,

∫ 1

0

c−(x, y) dy = 1, (2.16a–c)

ϕ|y=1 = 0, ϕ|y=0 = −V, (2.17a, b)

and

p(y) =
1

2

(
dϕ

dy

)2

+ pc, (2.18)

where pc is an arbitrary integration constant.
For quasi-equilibrium conditions, the solution of boundary-value problem

(2.14a, b)–(2.17a, b) splits into the ‘outer’ locally electroneutral solution, valid in the
‘bulk’ of the segment 0<y < 1, and the ‘inner’ or EDL solutions, valid in the ε-
vicinity of the interfaces at y = 0, 1 (see Rubinstein 1990; Rubinstein & Zaltzman
2000). The inner and outer solutions are connected through the standard procedures
of matched asymptotic expansions. The outer leading-order solution is that to the
quasi-electroneutral boundary-value problem:

d

dy

(
dc

dy
+ c

dϕ

dy

)
= 0,

d

dy

(
dc

dy
− c

dϕ

dy

)
= 0 (0 < y < 1), (2.19a, b)

(
dc

dy
− c

dϕ

dy

)∣∣∣∣
y=0,1

= 0, (ln c + ϕ)|y=0 = lnp1 − V, (2.20a, b)

(ln c + ϕ)|y=1 = lnp1,

∫ 1

0

c(y) dy = 1. (2.21a, b)

Here

c
def
= c+ = c−,

and conditions (2.20b) and (2.21a) express the continuity of the electrochemical
potential of cations (capable of penetrating the interfaces at y =0, 1) across the
discontinuities of the electric potential and ionic concentration, modelling the EDL
in the outer problem. The outer (quiescent concentration polarization) solution is
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obtained by a straightforward integration of the boundary-value problem (2.19a, b)–
(2.21a, b) in the form

c(y) =
I

2

(
y − 1

2

)
+ 1, ϕ(y) = ln

[
I

2

(
y − 1

2

)
+ 1

]
+ ln

p1

(1 + I/4)2
, (2.22a, b)

where

I
def
=

dc

dy
+ c

dϕ

dy
(2.23)

is the electric current density in the system. Equation (2.23) yields the current–voltage
relation

I = 4
1 − e−V/2

1 + e−V/2
. (2.24)

From (2.24), when V → ∞, I → I lim = 4 and, simultaneously, by equations (2.22a, b),
c(0) → 0 and

lim
y→0

ϕ

ln y
= 1. (2.25)

This is the key feature in the classical picture of concentration polarization – saturation
of the current density towards the limiting value, resulting from the vanishing interface
electrolyte concentration and the development of logarithmic singularity of electric
potential at the cathode. In fact, currents much greater than the limiting one are
readily passed through virtually ideally permselective cation-exchange membranes
(overlimiting conductance mentioned in § 1). Search for a mechanism for this and the
related occurrence of the excess electric noise, provided the main motivation for our
study of electroconvection in strong electrolytes. (In real systems electroconvection
is superimposed upon gravitational convection owing to density variation induced
by concentration changes and Joule heating, enhanced near the depleted interface.
Moreover, in the absence of forced convection, large-scale gravitational flow is the
major factor determining the parameters of the diffusion layer at the solution/solid
interface. On the other hand, the thickness of this layer is usually too small – tens
to a few hundred micrometres – for the gravitational convection to become a major
factor in the description of the diffusion layer. Moreover, overlimiting conductance is
observed in small horizontal polarization cells with gravitationally stable density
stratification induced by the electric current (Maletzki, Rosler & Staude 1992;
Rubinstein, Shtaude & Kedem 1988; Rubinstein et al. 2002.) In order to investigate
the stability of the quiescent concentration polarization solution (2.22a, b)–(2.24),
we must allow for lateral motions. In this case too, the problem splits into those
for locally quasi-electroneutral bulk and the boundary (electric double) layer at the
membrane/solution interface. Equations describing the ionic transfer and fluid flow
in the bulk are (see Rubinstein 1991):

∂c

∂t
+ Pe(v · ∇)c =

D + 1

2
∇ · (∇c + c∇ϕ), (2.26)

∂c

∂t
+ Pe(v · ∇)c =

D + 1

2D
∇ · (∇c − c∇ϕ), (2.27)

1

Sc

∂v

∂t
= −∇p + �ϕ∇ϕ + �v, (2.28)

∇ · v = 0, (2.29)
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whereas the boundary-layer analysis provides, in addition to boundary conditions
(2.20a, b), (2.21a), an expression for electro-osmotic slip, that is the tangential fluid
velocity at the outer edge of the EDL. Disregarding this, and assuming non-slip at
the solid wall instead, yields the bulk electroconvection formulation, for which a long-
time controversy existed with regard to the stability of the one-dimensional quiescent
concentration polarization solution (2.22a, b) (see Grigin 1985, 1992; Bruinsma &
Alexander 1990; Rubinstein et al. 1995; Baygents & Baldessari 1998; Buchanan &
Saville 1999; Alexandrov et al. 2002). Lerman et al. (2005) have shown that for bulk
electroconvection this solution is stable. Moreover, it was shown in Rubinstein et al.
(2005) that the electric force term in (2.28) always has a stabilizing effect on the
instability due to non-equilibrium electro-osmosis.

As for the electro-osmotic slip at a conductive permselective interface, two
fundamentally different regimes are to be distinguished in accordance with the
magnitude of the electric current through the interface and the related state of
the EDL. The first, quasi-equilibrium electro-osmosis, or electro-osmosis of the first
kind, following terminology of Dukhin (1991), pertains to currents, below the limiting
value. For such currents, the diffuse part of the EDL preserves its common quasi-
equilibrium structure as essentially identical with that for zero current. For such
conditions, the inner problem is reduced to the Poisson–Boltzmann equation

∂2ϕ

∂z2
= c(x, 0, t) (exp(ϕ − ϕ(x, 0, t)) − exp(−ϕ + ϕ(x, 0, t))) . (2.30)

Here, z = y/ε is the cathodic boundary-layer coordinate (correspondingly, z = (1−y)/ε
for the anodic boundary layer), ϕ(x, z, t) is the EDL potential. Solution of (2.30) yields

ϕ(x, z, t) =ϕ(x, 0, t) + 2 ln
exp(ζq/2) + 1 + (exp(ζq/2) − 1) exp(−z

√
2c(x, 0, t))

exp(ζq/2) + 1 − (exp(ζq/2) − 1) exp(−z
√

2c(x, 0, t))
. (2.31)

Here c(x, 0, t), ϕ(x, 0, t) are, respectively, the electrolyte concentration and the electric
potential at the outer edge of the EDL and

ζq(x, t) = ϕ(x, 0, t) − ϕ(x, 0, t)

is the potential drop across the latter.
Theory of quasi-equilibrium electro-osmosis at a permselective interface was

developed by Dukhin & Derjaguin (1976). An essential part of this theory is
accounting for polarization of the EDL by the applied tangential electric field,
resulting, in particular, in major lateral pressure drops in the double layer, owing to
the lateral variation of the Maxwell stresses. This results, for the tangential velocity
u in the double layer, in the equation of the form

−1

2

∂

∂x

[ (
∂ϕ

∂z

)2 ]
+

∂ϕ

∂x

∂2ϕ

∂z2
+

∂2u

∂z2
= 0. (2.32)

Note that the total lateral electric force in the EDL

Fx
def
=

∞∫
0

∂ϕ

∂x

∂2ϕ

∂z2
dz (2.33)
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is equal to minus the total lateral pressure gradient

Px
def
=

∞∫
0

∂p

∂x
dz. (2.34)

Indeed, by (2.18) and (2.34)

Px =
∂ϕ

∂x

∂ϕ

∂z

∣∣∣∣z=∞

z=0

− Fx, (2.35)

and because of the vanishing of the boundary term in (2.35) (stabilization at z = ∞
and constant potential at z = 0), we obtain

Px = −Fx. (2.36)

Integration of (2.32) with (2.31) yields for the electro-osmotic slip velocity, instead
of the common Helmholtz–Smoluchowski formula

us = ζq

∂ϕ

∂x
, (2.37)

the expression

us = ζq

(
∂ϕ

∂x
+

1

c

∂c

∂x

)
− 4

1

c

∂c

∂x
ln

1 + eζq/2

2
. (2.38)

The peculiarity of (2.38) is that, for an ideally permselective cation exchange
membrane maintained at a constant potential ln c + ϕ = const, that is, ∂c/∂x =
−c∂ϕ/∂x and for ζq → −∞, equation (2.38) yields

us = −(4 ln 2)ϕx. (2.39)

That is, the factor at −∂ϕ/∂x (electro-osmotic factor) tends to a maximal upper value
upon the increase of ζq (negative). This is in contrast to the respective prediction of
Helmholtz–Smoluchowski formula, (2.37), and is a direct consequence of polarization
of the EDL at a permselective interface.

Hydrodynamic stability of the quiescent concentration polarization with a limiting
quasi-equilibrium electro-osmotic slip, (2.39), was studied in Zholkovskij et al. (1996).
It was concluded that quasi-equilibrium electro-osmotic instability, although possible
in principle near the limiting current, was unfeasible for any realistic low-molecular
aqueous electrolyte. This conclusion followed because an electro-osmotic factor at
least one order of magnitude higher than the limiting value 4(ln 2) is required for
this type of instability to occur. This conclusion is valid as long as the system,
in particular, the EDL remains at quasi-equilibrium. This ceases to be the case at
the cathodic membrane (y = 0) when the current approaches the limiting value. We
have already seen that in this case, c → 0 and ϕ → −∞, which makes (2.30) formally
unsuitable for calculation of ϕ in the EDL and, thus, through (2.32), for calculation of
electro-osmotic velocity us. This reflects a fundamental structural change which occurs
in the system as it moves away from quasi-equilibrium upon I → I lim. The essence
of this change is that the division of the system into a locally quasi-electroneutral
bulk and a quasi-equilibrium boundary layer breaks down upon I → I lim, as reflected,
in particular, in the inconsistency of the local electroneutrality approximation which
appears in the basic concentration polarization solution, (2.22a, b), in this limit.
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Figure 2. (a) Ionic concentration profiles (—, c+; - - -, c−) for ε = 10−2 and four values of
voltage: 1, V =0; 2, V = 7; 3, V = 15; 4, V = 20. (b) Space charge density (c+ − c−) profile for
ε = 10−2 and four values of voltage: 1, V = 0; 2, V =7; 3, V = 15; 4, V = 20.

Indeed, according to (2.22b)

∂2ϕ

∂y2
(0) =

4I 2

(4 − I )2
→ ∞ when I → I lim = 4. (2.40)

This implies that for any finite ε, however small, setting the left-hand side of
the Poisson equation (2.3) equal to zero becomes inconsistent. This breakdown,
first notified by Levich (1962) and reflecting the breakdown of the straightforward
asymptotic representation of the diffusion layer as a combination of electroneutral
bulk and an O(ε) thick EDL, has motivated several studies of the space charge of
the non-equilibrium EDL (see Grafov & Chernenko 1962; Smyrl & Newman 1967;
Buck 1973). The picture of the non-equilibrium EDL that emerged from a numerical
solution of the one-dimensional problem similar to (2.14a, b)–(2.18) (see Rubinstein
& Shtilman 1979) and which was subsequently confirmed and elaborated by several
numerical and analytic studies (see Listovnichy 1989; Nikonenko, Zabolotsky &
Gnusin 1989; Manzanares et al. 1993; Rubinstein & Zaltzman 2001), may be
summarized as follows (see figures 2, 3).

For 0 <V = O(1) (I < I lim), local electroneutrality holds in the entire system except
for the boundary layers of the order of thickness ε at the edges of the region.
In the respective electroneutral region, a linear ionic concentration profile holds in
accordance with (2.22a). The maximal slope of the concentration profile in these
conditions is 2, which corresponds to I = I lim. This picture remains essentially valid
up to V = O(| ln ε|) (I � I lim). For O(| ln ε|) < V < O(ε−1) (I ≈ I lim), the following three
regions may be distinguished in the left-hand half-layer (from right to left). The quasi-
electroneutral ‘bulk’ region with a linear concentration profile with a slope of approx
twice unity. This region borders on the left with the extended diffuse space charge
region of width between O(ε2/3) and O(1), followed by the quasi-equilibrium, O(ε)
thick, boundary layer at the left-hand edge. Upon a further increase of the voltage
up to O(ε−1), the extended space charge region reaches a finite size O(1) and so does
the current increment over the limiting value [0< I − I lim = O(1)].
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Figure 3. Structure of the non-equilibrium boundary layer: I, quasi-equilibrium boundary
layer; II, extended space charge region; III, transition layer to quasi-electroneutral bulk.
1, cation concentration c+; 2, anion concentration c−; 3, space charge density (c+ − c−).
ε = 10−3, V = 20.

The study of the non-equilibrium EDL has continued since Levich (1962) (see
Chu & Bazant 2005 and references therein). Thus, Grafov & Chernenko (1962)
undertook the first analytic study of the EDL under current; Smyrl & Newman
(1967) focused on what later proved to be the crucial transition mode from the quasi-
equilibrium to the non-equilibrium EDL; Rubinstein & Shtilman (1979) identified
a suitable model problem, whose solution provided the entire picture of the non-
equilibrium EDL, with its extended space charge region, as a part of the macroscopic
diffusion layer. Still, no unified description of the EDL under current existed, valid
for all regimes from quasi-equilibrium to the extreme non-equilibrium one. In this
paper, we finalize such a description based on a systematic asymptotic analysis of a
canonical one-dimensional problem extracted from (2.14a, b)–(2.17a, b).

The observation of the development in the course of concentration polarization
of a non-equilibrium EDL with the extended space charge region lead Dukhin and
his colleagues (see Dukhin & Mishchuk 1989; Dukhin et al. 1989; Dukhin 1991 and
references therein) to conjecture the existence of related non-equilibrium electrokinetic
phenomena which they termed electrokinetic phenomena of the second kind.

An accurate analysis of non-equilibrium electro-osmotic slip at a flat permselective
membrane for V > O(| ln ε|)), was carried out in Rubinstein & Zaltzman (2001),
resulting in the expression

us = − 1
8
V 2 ∂

∂x
ln

∂c

∂y

∣∣∣∣
y=0

. (2.41)
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Derivation of (2.41) employed the asymptotic theory of the non-equilibrium EDL,
previously developed by Listovnichy (1989), and amounted to carrying out an analysis
similar to that outlined above for quasi-equilibrium electro-osmosis. Taking account
of polarization proved to be more necessary here, since a large potential drop between
the membrane surface and the bulk was concerned, that is, namely those conditions
for which saturation of the electro-osmotic factor occurred for a quasi-equilibrium
electro-osmotic slip. For obtaining a better physical insight into (2.41), it is worth
noting that ∂c/∂y|y = 0 is one half current density through the membrane which is the
local characteristic controlling the thickness of the non-equilibrium EDL and, thus,
the electric field in it. The accurate analysis of the EDL and its unified description
valid for all regimes (§ 3) yield a universal electro-osmotic slip condition (§ 4) and
provide us with a limiting electroconvective formulation (§ 5), thus, paving the way for
determining the exact thresholds of non-equilibrium electro-osmotic instability (§ 6)
and the study of nonlinear electroconvection, in general, and overlimiting conductance,
in particular.

3. Unified description of electric double layer undercurrent
The basic idea of our analysis is that there always exists in the vicinity of a

planar membrane with constant properties and fixed constant electric potential and
counter-ion concentration, a quasi-one-dimensional layer (Q1DL), into which the
EDL is embedded, and whose maximal thickness depends on the characteristics
of the lateral transport away from the membrane, in particular, the maximal flow
velocity and its related Péclet number. We know from our previous studies (see
Rubinstein & Zaltzman 2000, 2001) that this Q1DL is of the order of 1/| ln ε|, that
is much thicker than any realistic electric double layer of either the equilibrium or
non-equilibrium kind. We are about to solve the one-dimensional transport equations
in this sublayer and match the obtained solution with that in the two-dimensional
quasi-electroneutral bulk (QEB). As will be shown below, the possibility of such
a matching is provided by the overlap of the Q1DL with the QEB (Q1DL ∩ QEB).
From this analysis, a boundary condition for the two-dimensional outer QEB problem
will result, depending on a single parameter obtained from the solution of the one-
dimensional problem in the Q1DL. There are only two opposite limit cases for which
the outer problem decouples completely from that in the Q1DL. Those are the case
of the quasi-equilibrium EDL, occurring for electric current below the limiting value,
and the case when the extended space charge region of the non-equilibrium EDL
is larger by an order of magnitude than ε2/3. In all physically relevant intermediate
regimes the coupling of the two problems is essential.

3.1. One-dimensional analysis in the Q1DL 0 < y < O(1/| ln ε|)
Below we consider a thin vicinity of the cathode-exchange the membrane
(0 <y <O[1/| ln ε|]), assuming that the right-hand edge of the considered interval
lies in the electroneutral bulk. We distinguish two sublayers in the Q1DL. The first
sublayer is the EDL. It will be shown below that, generally, the width of the EDL
changes from O(ε), for potential drops of the order of O(1), to O(1) for very high
potential drops of the order of O(1/ε), irrelevant in the current context. The second
portion is the overlap zone of the Q1DL with the QEB. With a natural scaling, the
leading-order one-dimensional problem for ionic transport in the Q1DL, written in
the original dimensionless variables, is as follows (see Rubinstein & Zaltzman 2001;
Rubinstein et al. 2005).
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Equations

dc+

dy
+ c+ dϕ

dy
= I,

dc−

dy
− c− dϕ

dy
= 0, ε2 d2ϕ

dy2
= c− − c+. (3.1a−c)

Boundary conditions at the membrane surface

ϕ(x, 0, t) = −V, c+(x, 0, t) = p1. (3.2a, b)

Boundary conditions at the outer edge of the Q1DL

c+ = c− = c, ln c− − ϕ = µ− = µ−(x, 0, t). (3.3a, b)

Here, I (x, t)
def
= i(x, 0, t) = 2cy(x, 0, t), which is the boundary value of the electric

current density in the QEB and, correspondingly, the current density independent of
y in the Q1DL, µ−(x, y, t) is the electrochemical potential of co-ions, also constant
in the Q1DL by (3.1b).

Equations (3.1a–c) may be rewritten as follows

ε
d

dy
(c+ − c−) = E(c+ + c−) + εI (0 < y < O[1/| ln ε|]), (3.4)

ε
dc+

dy
= Ec+ + εI, ε

dE

dy
= c+ − c−, (3.5a, b)

where

E = −ε
dϕ

dy
. (3.6)

By substituting (3.5a, b) into (3.4) and integrating the resulting equation, we obtain

c+ =
ε

2

dE

dy
+ 1

4
E2 +

I

2
(y − y0) . (3.7)

Here, y0 is an integration constant.
Considering (3.5a, b) in the electroneutral part of the Q1DL and keeping the leading

terms in (3.7), we conclude that

c+ = c− = c =
I

2
(y − y0) in Q1DL ∩ QEB. (3.8)

Thus, y0 is the root of the linear extrapolation of the outer (QEB) ionic concentration
profile near the interface. By substituting (3.7) into (3.5a), we obtain the following
inhomogeneous Painleve equation of the second kind for E

ε2 d2E

dy2
= 1

2
E3 + I (y − y0) E + εI. (3.9)

Seeking an outer asymptotic solution of (3.9) as a power expansion in ε, we find that

E = − ε

y − y0

− 3ε2

2I (y − y0)4
+ · · · for y − y0 � ε2/3, (3.10)

We note that this outer solution is valid for Q1DL ∩ QEB that is for y in the
range y − y0 � O(ε2/3), y <O(1/| ln ε|), with |c+ − c−| 	 O(ε2/3) and |ϕy | � O(ε−2/3).
Integration of the asymptotic expansion (3.10) in Q1DL ∩ QEB and (3.8) yields to
the leading order

ϕ(x, y, t) = ln (y − y0) + Φ(x, t) = ϕ in Q1DL ∩ QEB, (3.11)
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where

Φ(x, t)
def
= ln

I

2
− µ−(x, 0, t) = φ(x, 0, t). (3.12)

Another constant in the Q1DL, is the boundary value of the regular component of
the electric potential in the QEB, defined as

φ(x, y, t)
def
= ϕ(x, y, t) − ln(y − y0). (3.13)

The representation (3.13) reflects the very essence of concentration polarization at the
limiting current (see (2.25)).

To analyse (3.9), we define the boundary-layer variables F and z by the equalities

E = I 1/3ε1/3F, y = I−1/3ε2/3z. (3.14a, b)

In terms of these variables, the boundary-value problem (3.9), (3.2a, b), (3.3a, b),
(3.11–3.13) is transformed into

d2F

dz2
= 1

2
F 3 + (z − z0)F + 1

(
0 < z < O(ε−2/3/| ln(ε)|)

)
, (3.15)

(
dF

dz
+ 1

2
F 2

)∣∣∣∣
z=0

= 2I−2/3ε−2/3p1 + z0, (3.16)

F (z) = − 1

z − z0

for z � z0 (QEB), (3.17)

z∫
0

F (z) dz + ln(z − z0) + 2
3
ln ε − 1

3
ln I = −V − Φ(x, t) in QEB. (3.18)

Here parameter z0 is defined as

z0 = I 1/3ε−2/3y0.

In what follows, we will use this representation of the basic problem for obtaining
a unified description of the Q1DL valid for all states of the EDL. Let us recall that
(3.17) is a version of the electroneutrality condition following from the assumption of
a monotonic increase of F at infinity in (3.15), whereas (3.18) stands for the electric
potential drop across the Q1DL. The right-hand side of (3.18) defines the ‘reduced’
ζ -potential as

ζ (x, t)
def
= −V − Φ(x, t). (3.19)

Finally, let us point out that the term on the right-hand side of the boundary condition
(3.16), unbounded for ε → 0 and characteristic of condition (3.2a, b) rewritten in the
new variables, implies the presence of a boundary layer near z = 0.

Below, for future use, we review various types of solution to the Painleve equation
(3.15) and its approximations corresponding to various ranges of parameter z0(ε) and,
thus, through (3.18), to various ranges of reduced ζ -potential in relation to ε → 0.
The names which we assign to various scenarios associated with these solutions
are motivated by the subsequent analysis of transition from quasi-equilibrium to
non-equilibrium EDL.
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Figure 4. Profiles of the transition layer solution FSC-EN (—), extended space charge region
asymptotics −

√
−2z (- - - 1), and electroneutral asymptotics −1/z (- - - 2).

3.2. Review of solutions to the basic problem (3.15)–(3.18) for various ranges of
parameter z0 versus ε

Scenario 1(figure 4). Entire transition layer solution

By looking for a solution of (3.15) on the entire axis −∞ <z < ∞ for z0 fixed
(possibly large), we arrive at the transition layer solution

F (z) = FSC-EN(z − z0) (3.20)

connecting between the non-equilibrium space charge region (z 	 z0) and quasi-
electroneutral bulk (QEB, z � z0). FSC-EN(z) is the unique Painleve transcendent with
the following characteristic asymptotics, inferred from the equation

d2FSC-EN

dz2
= 1

2
F 3

SC-EN + zFSC-EN + 1,

by assuming FSC-EN, F ′′
SC-ENzz vanishing for z � 0 and F 3

SC-EN, zFSC-EN terms
dominating, along with FSC-ENzz bounded for z 	 0, as

FSC-EN(z) =

⎧⎨⎩−
√

−2z, z 	 0,

−1

z
, z � 0.

(3.21a, b)

Scenario 2 (Figure 5a, b). Thin quasi-equilibrium EDL (QE–EDL), z0 = −O(ε−2/3)

By assuming z0 = −O(ε−2/3) < 0 and using the scaling

r = z
√

|z0|, r0 = |z0|ε2/3
(
= I 1/3 |y0|

)
, R(r) =

F√
|z0|

, (3.22a–c)

we obtain from (3.15), (3.16), to leading order, the following ‘thin QE–EDL’
approximation of the Painleve equation

d2R

dr2
= 1

2
R3 + R (3.23)
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Figure 5. Scenario 2. (a) Profile of the function F (z) (line 1) and its quasi-electroneutral
asymptotics −1/(z − z0) (line 2). (b) Sketch of the structure of Q1DL.

which, considered on the half-axis 0<r < ∞, yields, together with boundary condition
(3.16) rewritten in terms of R, r as

dR

dr
(0) + 1

2
R2(0) = 2

p1

r0

I−2/3 − 1, (3.24)

and the boundedness condition at r → ∞, the exponentially decaying ‘Thin QE–EDL’
solution of the form

R = −2
2

(
2p1I

−2/3/r0 − 1
)
e−r(√

2p1I−2/3/r0 + 1
)2 −

(√
2p1I−2/3/r0 − 1

)2
e−2r

. (3.25)

Scenario 3 (figure 6a, b). Thick QE–EDL, −O(ε−2/3) <z0 < −O(1) < 0

Note that (3.25) remains meaningful for p0, approaching zero. In this case, R may
be viewed as a composition of the following two solutions.

(3a) Inner sublayer of the thick QE–EDL

The first is the algebraically decaying ‘thin sublayer’ (of the thick QE–EDL) solution
of the form

Q = − 2

q + I 1/3
√

2/p1

(3.26)



Electro-osmotic slip and electroconvective instability 189

Overlap zone of Painleve
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Figure 6. Scenario 3. (a) Profile of the function F (z) (line 1), its thin QE–EDL asymptotics
(3.26), (3.29a, b) (line 2), and quasi-electroneutral asymptotics −1/(z − z0) (line 3). (b) Sketch
of the structure of the Q1DL.

to the following ‘inner thin QE–EDL sublayer’ approximation to the Painleve
equation

d2Q

dq2
= 1

2
Q3 (3.27)

obtained from (3.23) by omitting, to the leading order, the last term, with the similarly
obtained from (3.24) boundary condition

dQ

dq
(0) + 1

2
Q2(0) = 2p1I

−2/3. (3.28)
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Here the following rescaling has been applied

q =
z

ε1/3
=

r√
|r0|

(
=

y

I 1/3ε

)
, Q(q) = ε1/3F = R

√
|r0|

(
= I−1/3E

)
. (3.29a, b)

Let us note that for q → ∞, solution (3.26) behaves as

Q0 � − 2

q
.

Thus, in order to yield (3.25), the inner solution (3.26) is to be matched with the
following outer one.

(3b) Outer sublayer of the thick QE–EDL

This is a singular solution to (3.23), satisfying at r = 0 the condition

R +
2

r
= O(1).

This solution reads

R(r) = −4
e−r

1 − e−2r
. (3.30)

We note that the same solution is recovered from (3.25) by keeping the leading-order
terms for p0 	 1. Thus, (3.26), (3.29a, b), (3.30) yield for −ε−2/3 < O(z0) < −O(1) < 0
(y0 small negative) the following approximation

R(r) = − 2

r + I 1/3(2|r0|/p1)1/2
+

2

r
− 4

e−r

1 − e−2r
(3.31)

to the ‘thick QE–EDL’ solution (3.25) as a composition of an algebraically decaying
solution (3.26) to the approximated Painleve equation (3.27), matched with the
exponentially decaying singular solution (3.30) to another approximated version of
the Painleve equation (3.23). We will see below that, upon a further increase of z0

to the ‘critical’ range O(1), the singular solution (3.30) transforms to that to the full
Painleve equation. It will also become evident that singular solutions of this type
form an important element of the non-equilibrium EDL in the realistic voltage range.
In this sense, ‘thick QE–EDL’ represents a crucial link between the equilibrium and
non-equilibrium EDL.

Scenario 4 (figure 7a, b). Transitional EDL (TEDL), z0 = O(1)

(4a) Inner thin QE sublayer of TEDL

For this range, (3.15) and (3.16) yield, to the leading order on the scale (3.29a, b), the
inner thin QE sublayer problem identical to (3.27) and (3.28) with the algebraically
decaying solution (3.26) at infinity.

(4b) Basic singular Painleve solution

Solution (3.26) is to be matched with the basic singular Painleve solution, to the
following outer TEDL problem:

d2F

dz2
= 1

2
F 3 + (z − z0)F + 1, (3.32)

(
F +

2

z

)∣∣∣∣
z=0

= O(1), F (∞) = 0. (3.33a, b)
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Figure 7. Scenario 4. (a) Profile of the function F (z) (line 1), its thin QE–EDL asymptotics
(3.26), (3.29a, b) (line 2), and quasi-electroneutral asymptotics −1/(z − z0) (line 3). (b) Sketch
of the structure of the Q1DL.

This solution possesses an algebraic singularity at z = 0 and a ‘quasi-electroneutral’
asymptotics (3.17) for z → ∞.

Scenario 5 (figure 8a, b). Developed microscopic non-equilibrium space charge regime
(mSCR), O(1) < z0 <O(ε−2/3)

(5a) Inner thin QE sublayer for mSCR

For this regime, the scaling (3.29a, b) yields once more the algebraically decaying
solution (3.26).

(5b) Outer thick QE sublayer problem for mSCR

Solution (3.26) is to be matched with a singular solution to the outer thick QE
sublayer problem for mSCR,

d2R

dr2
= 1

2
R3 − R, 0 < r < ∞, (3.34)

(
R +

2

r

)∣∣∣∣
r=0

= O(1), R(∞) = −
√

2, (3.35a, b)

obtained in a way similar to that which leads to (3.23), (3.24) from (3.15), but, this
time, with |z0| = z0 instead of |z0| = −z0 in rescaling (3.22a–c), in accordance with the
positivity of z0 in the current regime. Note the opposite sign of the last term in (3.34),
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Figure 8. Scenario 5. (a) Profile of the function F (z) (line 1), its thin QE–EDL asymptotics
(3.26), (3.29a, b) (line 2), and quasi-electroneutral asymptotics −1/(z − z0) (line 3). (b) Sketch
of the structure of Q1DL.

compared to that in (3.23), for the same reason. This yields the appearance of a non-
zero fixed point on the right-hand side of (3.34) and, correspondingly, the asymptotic
condition (3.35b) (instead of decay to zero for R in equation (3.30)). Accordingly, the
solution to boundary-value problem (3.34), (3.35a, b) is

R = −
√

2
e

√
2r + 1

e
√

2r − 1
. (3.36)

Note that for r → ∞, this outer thick QE sublayer solution matches exactly with
non-equilibrium space charge asymptotics −

√
2 (see (3.21a) with z = −z0 	 0).

Scenario 6 (figure 9a, b). QE sublayer for macroscopic non-equilibrium space charge
regime (MSCR), 0 <z0 = O(ε−2/3)

In this case, similarly to (3.23)–(3.25), a regular QE sublayer solution to (3.34) with
boundary condition

dR

dr
(0) + 1

2
R2(0) = 2

p1

r0

I−2/3 + 1,
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Figure 9. Scenario 6. (a) Profile of the function F (z) (line 1), its thin QE–EDL asymptotics
(3.26, 3.29a, b) (line 2), and quasi-electroneutral asymptotics −1/(z − z0) (line 3). (b) Sketch of
the structure of the Q1DL.

reads in terms of F and z

F (z) = −
√

2z0

(
1 +

√
p1

I 1/3y0

+ 1

)
exp(

√
2z0z) +

√
p1

I 1/3y0

+ 1 − 1(
1 +

√
p1

I 1/3y0

+ 1

)
exp(

√
2z0z) −

√
p1

I 1/3y0

+ 1 + 1

. (3.37)

Let us note that, similarly to (3.36), solution (3.37) decays exponentially to the value
−

√
2z0 (instead of zero in (3.25)) and, thus, matches exactly with the extended space

charge asymptotics (3.21a).
We conclude by recapitulating various notations for the electric field, employed in

this and previous section, pertaining to different scalings in different parts of the EDL
in various regimes: E = −ε∂ϕ/∂y (3.6), F = ε1/3E = −ε2/3∂ϕ/∂y (3.14a), R = |z0|−1/2F

(3.22c), Q = ε1/3F (3.29b).

3.3. Transition from thin QE–EDL to MSCR upon the increase of V (or |ζ |)
In this section, we relate each of the scenarios 2–6 to a specific range of ζ , and trace
the transition from thin QE–EDL to the MSCR upon the increase of |ζ |. In particular,
we will show that the increase of z0 from −O(ε−2/3) to O(ε−2/3) corresponds to |ζ |
increasing from O(1) to O(ε−1).
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Thin QE–EDL0 = −O(ε−2/3) < 0 ⇒ ζ (x) = −O(1)

Let us start with the case of thin QE–EDL near the membrane surface z = 0
(scenario 2 of § 3.2). In this case, the Q1DL solution consists of the following two
components: thin QE–EDL solution R(r) (3.25) and the following outer QEB solution
(compare with (3.17))

F0(z) = − 1

z − z0

which match to the leading order O(ε2/3), yielding the following composite solution

F0(z) +
√

|z0|R(z
√

|z0|) = − 1

z − z0

−
4
√

|z0|
(

2
p1

|z0|ε2/3
I−2/3 − 1

)
exp(−z

√
|z0|)(√

2
p1

|z0|ε2/3
I−2/3 + 1

)2

−
(√

2
p1

|z0|ε2/3
I−2/3 − 1

)2

exp(−2z
√

|z0|)
. (3.38)

Parameter r0 (or z0, or y0) is related to voltage through integration of (3.25) yielding

∞∫
0

R(r) dr = ζq
def
= −V − ϕq(x), (3.39)

Here, ϕq(x) is the electric potential at the outer edge of thin QE–EDL, and ζq(x)
is the quasi-equilibrium portion of the total ζ -potential (the overall potential drop
across the Q1DL minus that upon the quasi-electroneutral part of the latter). The
latter equality yields

r0 = 2p1I
−2/3 exp(ζq), (3.40)

and

y0 = −2p1

I
exp(ζq), ζq = ln

−Iy0

2p1

= O(1). (3.41a, b)

By substitution of (3.38) and (3.41b) into the overall potential balance (3.18), we
obtain

ζq + ln (−y0) = 2ζq + ln

(
2p1

I

)
= ζ = O(1) in QEB

(
ε < O(y) <

1

ln(ε)

)
. (3.42)

Substitution of (3.42) into (3.41a) yields

y0 = −
√

2p1

I
exp(ζ/2). (3.43)

Thick QE–EDL 0 <O(1) < −O(z0) <ε−2/3 ⇒ ζ (x) = α| ln(ε)| + O(1), 0 <α < 4/3

We consider next the case of the thick QE–EDL. In this case, the order of magnitude
of the control parameter z0 (or y0) is

z0 = −O(εα/2−2/3), y0 = −O
(
εα/2

)
. (3.44a, b)

Correspondingly, according to scenario 3 of § 3.2, the composite solution (3.38) is still
valid. This solution may be represented this time as the following composition of
the algebraically decaying solution (3.25) (which may be viewed as consisting of the
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inner sublayer solution (3.26) matched with the exponentially decaying singular outer
solution (3.30)) and the quasi-electroneutral solution (3.38):

F (z) =

−4
√

|z0|
(

2
p1

|z0|ε2/3
I−2/3 − 1

)
exp(−z

√
|z0|)(√

2
p1

|z0|ε2/3
I−2/3 + 1

)2

−
(√

2
p1

|z0|ε2/3
I−2/3 − 1

)2

exp(−2z
√

|z0|)

− 1

z − z0

(3.45a)

F (z) � − 2

z + I 1/3ε1/3
√

2/p1

+
2

z
− 4

√
|z0| exp(−

√
|z0|z)

1 − exp(−2
√

|z0|z)
− 1

z − z0

. (3.45b)

By evaluating the potential drop across thick QE–EDL through integration of (3.25)
as we did previously in (3.39)–(3.41a, b), (3.42), (3.43), we find that

y0 = −2p1

I
exp(ζq) � −

√
2p1

I
exp(ζ/2), (3.46)

which is still identical to (3.41a).
We note that both the thick QE–EDL solution (3.45a) and its approximation

(3.45b) yield the same expression for y0. Indeed, by substituting (3.45b) (without the
QEB component −1/(z−z0) into (3.39) for the overall potential drop across QE–EDL,
we obtain

∞∫
0

(
− 2

z + I 1/3ε1/3
√

2/p1

+
2

z
− 4

√
|z0| exp(−z

√
|z0|)

1 − exp(−2z
√

|z0|)

)
dz = ζq. (3.47)

By integration in the left-hand side of (3.47), we recover (3.46) for the parameter y0.

Thus, although the approximate formula (3.45b) is not valid point-wise for ζ = −O(1),
it still provides the exact expression for y0 for all values of ζ -potential in the range
O(1) � |ζ | <O

(
4| ln ε|/3

)
. We explain this ‘paradox’ in Appendix A.

Critical case: z0 =O(1) ⇒ ζ =O(4/3 ln ε). Transition from thick QE–EDL to
NE–EDL via TEDL

Let us consider the critical case

y0 = O
(
ε2/3

)
, z0 = O(1).

In this case, the Q1DL solution is essentially that for TEDL described by scenario 4.
Let us recall that in this case, the thick QE–EDL transforms into the non-equilibrium
EDL occupying the layer 0< z � O(1) with the overall Q1DL solution consisting of
the following two components: algebraically decaying thin QE–EDL solution (3.26)
matched with the singular Painleve solution (3.32), (3.33a, b). Thus, the leading-order
term of the overall composite solution reads

F(0)(z) = − 2

z + ε1/3I 1/3
√

2/p1

+ F (z) +
2

z
. (3.48)

Here F (z) is the singular Painleve solution (3.32), (3.33a, b). In Appendix B, we show
that the contribution of higher-order corrections into this composite solution is of
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the order of O(ε1/3). This yields to the leading order for the reduced ζ -potential:

z∫
0

(
2

z
− 2

z + ε1/3I 1/3
√

2/p1

+ F (z)

)
dz + 2

3
ln ε − 1

3
ln I + ln(z − z0) + O

(
ε1/3

)
= ζ,

(3.49)
where z ∈ Q1DL ∩ QEB.

In order to simplify (3.49), let us define the regular part G(z) of the singular Painleve
solution as

G(z) = F (z) +
2

z
. (3.50)

Substitution of (3.50) into problem (3.32), (3.33a, b) yields the following boundary-
value problem for G(z)

d2G

dz2
= 1

2
G3 +

6

z2
G − 3

z
G2 + zG − 1 + z0

(
2

z
− G

)
(0 < z < ∞), (3.51)

G(0) = O(1), G(z) =
2

z
− 1

z − z0

for z − z0 � 1. (3.52a, b)

For small z, the requirement of boundedness of G(z) at z =0 yields the expansion

G(z) = −z0

3
z + 1

4
z2 + · · · (3.53)

Let us point out that function G is controlled by a single parameter z0. In terms of
G(z), (3.49) reads

P (z0) + 4
3
ln ε + ln

2

p1

+ 1
3
ln I = ζ. (3.54)

Here,

P (z0)
def
=

∫ ∞

0

(
G(z) − 1

z + 1

)
dq. (3.55)

In figure 10, we present the z0 versus ζ curve calculated from (3.54), (3.55) for I = 2,

p1 = 10 and ε = 10−5.
We observe from this curve that z0 unboundedly decreases to −∞ as ζ → 0, and so

does the last term on the right-hand side of (3.51), thus, generating a (1/
√

|z0|)-thick
boundary layer near z = 0. For this boundary layer, through rescaling (3.22a–c) we
immediately recover the thick QE–EDL (scenario 3) solution R(r), (3.31), as the low
reduced ζ -potential asymptotics of the TEDL solution (3.48). We point out that z0

found as a solution to (3.54) matches remarkably well with the value predicted by
(3.41a), (3.46) derived for very different conditions. To illustrate this statement, let
us extrapolate (3.42), determining the quasi-equilibrium portion ζq of ζ and valid for
O(1) � |ζ | < 4/3| ln ε|, to the critical case |ζ | =O(4/3| ln ε|) and compare z0 calculated
from (3.54), (3.55) (line 1 in figure 10) with that obtained from (3.41a), (3.46) (line 2
in figure 10). Based on the extremely close agreement between ζ 	 −1 asymptotics
of z0 calculated from (3.54) and z0 obtained from (3.46), we conclude that (3.54)
derived for the ‘critical’ range ζ = O(4/3 ln ε) yields a correct value of parameter z0

(and, thus, also of y0) for the entire range of ζ from quasi-equilibrium (ζ = −O(1))
to ζ =O(4/3 ln ε).

To complete the discussion of the critical case z0 = O(1), we observe that (3.54)
directly yields the estimate ζ =O(4/3 ln ε).
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Figure 10. Profile of z0 as a function of ζ (line 1), and quasi-equilibrium (line 2) and
developed non-equilibrium space charge regime (line 3) asymptotics of z0.

Developed microscopic non-equilibrium space charge zone
O(1) < z0 < O(ε−2/3) ⇒ |4/3 ln ε| <O(|ζ |) <O(1/ε)

Let us finish this section with the analysis of the two regimes of developed non-
equilibrium space charge produced by overcritical reduced ζ -potentials. We begin
with the microscopic non-equilibrium space charge case occurring for ζ in the range
|4/3 ln ε| <O(|ζ |) < O(1/ε). According to scenario 5, in this cases, the Q1DL solution
consists of the following three components:

(i) Algebraically decaying thin QE–EDL solution (3.26), matched with
(ii) Thick QE–EDL solution (3.34), (3.35a, b) exponentially decaying to −

√
2z0.

This latter value corresponds to
(iii) Non-equilibrium space-charge asymptotics −

√
2z0 ((3.21a) with z = −z0 	 0).

The solution of (3.15) for such large values of parameter z0 is approximated well by
the entire transition layer solution (3.20).

Summarizing, the leading-order composite solution for the mSCR reads

F (z) = − 2

z + I 1/3ε1/3
√

2/p1

+
2

z
−

√
2z0

exp(
√

2z0z) + 1

exp(
√

2z0z) − 1
+FSC-EN(z−z0)+

√
2z0. (3.56)

Substitution of (3.56) into (3.18) yields

2

√
2Iz3

0/3 = −
(
ζ − 4

3
ln ε − 1

3
ln I

)
+ O(1), (3.57)

and, thus,

z0 =
32/3

2I 1/3

∣∣ζ − 4
3
ln ε − 1

3
ln I

∣∣2/3 + O(1). (3.58)

Equation (3.58) implies that whenever the following inequality holds

z0ε
2/3 	 1

| ln ε| , (3.59)
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Figure 11. Profile of F as a function of z − z0: 1, entire transition layer solution FSC-EN;
2, scenario 3, z0 = −10; 3, scenario 4, z0 = 0; 4, scenario 5, z0 = 10; A, quasi-electroneutral
asymptotics −1/(z − z0); B , non-equilibrium space charge asymptotics −

√
−2(z − z0).

we have

ζ � −O

(
1

ε| ln ε|3/2

)
> −O

(
1

ε

)
. (3.60)

Inequality (3.60) yields an upper bound estimate for applicability of quasi-one-
dimensional analysis. We reiterate that (3.58) follows from (3.54), (3.56) and asymptotic
expansion (3.21a) for z0 → ∞.

In figure 10, we compare once more z0 obtained from (3.54), for ζ = O (4/3 ln ε)
(line 1), with that obtained from (3.58) for |4/3 ln ε| <O(|ζ |) (line 3). Based on this
comparison, we broaden our previous conclusion concerning the range of validity
of (3.54). In fact, this equation, together with (3.49), (3.54) yields a correct value of
parameter z0 (and, thus, also of y0) for the entire range of reduced ζ -potential from
quasi-equilibrium (ζ (x) = O(1)) to the mSCR |4/3 ln ε| < O(|ζ |) <O (1/ε).

Macroscopic non-equilibrium space charge regime 0 < z0 =O(ε−2/3) ⇒ |ζ | � O(1/ε)

For still larger reduced ζ -potentials (|ζ | � O(1/ε)), the width of the non-equilibrium
space charge zone exceeds O(1/| ln ε|) and may reach O(1), thus, violating the assumed
one-dimensionality. In this case, the above analysis is still applicable for strictly
one-dimensional electrodiffusional situations. For scenario 7, the one-dimensional
electrodiffusional solution is the following composition of the entire transition layer
solution and thin QE–EDL solution:

F (z) = 2
√

2z0

1 −
√

p1

I 1/3y0

+ 1(
1 +

√
p1

I 1/3y0

+ 1

)
exp(

√
2z0z) + 1 −

√
p1

I 1/3y0

+ 1

+ FSC-EN(z − z0).

(3.61)
By keeping the leading-order terms in (3.58), we obtain

z0 =
32/3

2I 1/3
|ζ |2/3 .

Figure 11 gives a summary of the asymptotic solutions of this section superimposed
upon the entire transition layer solution FSC-EN (3.20), but, the discussion of charge
distribution in the EDL for different ranges of ζ (or z0) is deferred to Appendix B.
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3.4. Limiting two-dimensional QEB electrodiffusion problem

We are set now to formulate the full limiting two-dimensional electrodiffusion problem
in the quasi-electroneutral bulk (QEB) for the regimes with ‘thin charged layers’
(scenarios 2–5, O(1) � −ζ <O(1/ε)). This problem will consist of the following two
subproblems: that for the QEB proper, to be solved in the domain {−∞ <x < ∞,

0 < y < 1}, and that for the Q1DL. The latter has been analysed above, yielding
the crucial parameter y0(x, t). Recall that according to (3.8), y0 is the extrapolated
position at which the QEB concentration vanishes. The Q1DL analysis provides,
through (3.54), y0 as a function of the data of the quasi-one-dimensional problem
which are the boundary values of regular parts of the solutions to the QEB problem
(Φ(x, t) = φ(x, 0, t) and I (x, t) = i(x, 0, t)). We begin with formulation of the leading
order (ε = 0, O(|ln ε|) = ∞) QEB problem:

3.4.1. Leading-order singular QEB problem

For the relevant range of ζ , y0 lies in the range −O(1) � y0 � O(ε2/3). Thus,
in accordance with (3.8), the crucial boundary condition for concentration at the
depleted boundary y = 0 is, to the leading order,

c(x, 0, t) =

⎧⎨⎩−y0

∂c

∂y
(x, 0, t) (y0 � 0),

0 (y0 � 0).

(3.62)

We note that, according to the above Q1DL analysis (3.41a), (3.46), for
O(y0) < −ε2/3, condition, (3.62) is the standard local equilibrium condition, implying
continuity of electrochemical potential of counter-ions at the membrane/solution
interface. (This ceases to be the case in the critical regime, for O(y0) = −ε2/3.)

The rest of the QEB formulation is straightforward. It comprises the impermeability
condition for co-ions at y = 0

∂c

∂y
− c

∂ϕ

∂y
= 0; (3.63)

and the standard local equilibrium and co-ions impermeability conditions at the
‘enriched’ boundary y = 1 :

(ln c + ϕ) |y=1 = lnp1,

(
∂c

∂y
− c

∂ϕ

∂y

)∣∣∣∣
y=1

= 0; (3.64a, b)

and the equations of quasi-electroneutral electrodiffusion for the ionic concentration
and electric potential:

∂c

∂t
= �c, ∇ ·

(
1 − D

1 + D
∇c − c∇ϕ

)
= 0, |x| < ∞, 0 < y < 1, t > 0. (3.65a, b)

The boundary values of the regular potential Φ(x, t) = ln(I (x, t)/2) − µ−(x, 0, t) and
the electric current density i(x, 0, t)= 2∂c/∂y(x, 0, t) = I (x, t) provide the data for
(3.54) for y0.

For vanishing boundary concentration, the problem (3.62)–(3.65a, b) is an instance
of those with a boundary degeneracy in the elliptic equation (3.65b). (A common
example of such problems is the extensively studied porous medium equation; see
Kamin, Peletier & Vazquez 1989).

Restricting ourselves to consideration of strong depletion |y0| 	 1 at y = 0, we
may simplify the formulation of the outer problem (3.62)–(3.65a, b). In this case, the
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boundary condition (3.62) may be rewritten as

c(x, 0, t) = 0.

Let us note that, to the leading order considered here, electrochemical potential of
cations ln c + ϕ is infinite at the depleted boundary y =0 for y0 � 0 and, accordingly,
the vanishing concentration at the depleted boundary corresponds to an infinite
voltage V. Formulation (3.62)–(3.65a, b) is not very useful because it yields short-
wave singularity in electro-osmotic instability which constitutes the main topic of
our concern (see Rubinstein & Zaltzman 2003; Rubinstein et al. 2005). Thus, these
formulations require regularization which may be achieved by accounting for the
next-order terms in the cationic electrochemical potential. This yields the following
regular formulation.

3.4.2. Regular QEB problem

We regularize limiting formulation (3.62)–(3.65a, b) by taking into account the
leading-order correction to the boundary value of the QEB cationic electrochemical
potential, which is of the order O(1) for quasi-equilibrium and O(| ln ε|) for non-
equilibrium regimes. We also note that, for all regimes, the anionic electrochemical
potential is constant in the Q1DL and is equal to

µ− = ln c− − ϕ = ln
I

2
− Φ(x, t), y ∈ Q1DL ∩ QEB.

Equations (3.8), (3.11) yield

µ+ = ln
I

2
+ Φ(x, t) + 2 ln(y − y0) in Q1DL ∩ QEB. (3.66)

Let us take y = y1 in (3.66), where y1 is the outer edge of the EDL. Then, for the
quasi-equilibrium EDL (O(|ζ |) = α| ln ε|, 0 <α < 4/3), (3.44a, b) yield

O(ε1/3−α/4) = O(|z0|−1/2ε2/3) 	 y1 	 − y0 = O(ε−α/2),

and, thus, substitution of (3.43), (3.46) into (3.66) yields

µ+ = lnp1 − V, for O(|ζ |) < 4
3
| ln ε|. (3.67)

For O(|ζ |) � 4
3
| ln ε|, (3.19), (3.54), (3.55) and (3.66) yield for z ∈ Q1DL ∩ QEB

µ+ = ln
p1(z − z0)

2

4
− V − P (z0). (3.68)

Substituting asymptotic relations (3.56), (3.57) into (3.50), (3.55) and, keeping leading-
order terms, we find from (3.54) for z0 � O(1), (4/3| ln ε| � O(|ζ |)):

P (z0) = O(1) +
(2 max(z0, 0))3/2I 1/2

3
. (3.69)

Equations (3.68), (3.69) applied at the outer boundary of the Q1DL z1, yield the
sought generalization for non-equilibrium regimes of continuity condition (3.67). The
question is where to place z1? Clearly, it has to be to the right of the outer edge
of the EDL. We argue that, with a reasonable choice of z1, for all our relevant
non-equilibrium regimes 4/3| ln ε| � O(|ζ |) < 1/ε, the difference z1 − z0 is independent
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Figure 12. Minimum cationic concentration c0 (a) and relative position of the outer edge of
EDL z1 − z0 (b): (1, according to Definition 1; 2, according to Definition 2) as functions of ζ
for ε =10−5.

of ζ and ε, that is

ln (z1 − z0) = O(1). (3.70)

To illustrate this, let us compare the following two definitions of z1.

Definition 1. Let us use a stepwise approximation for the cationic concentration
profile, of the kind employed by Nikonenko et al. (1989) by assuming

c = c0
def
= minc+

EDL

in the EDL outside the quasi-equilibrium sublayer up to the cross-section with the
linear QEB solution, and let us identify z1 with the position of the cross-section point.
This yields

z1 =
2c0

(εI )2/3
+ z0. (3.71)

In figure 12(a), we present the c0 versus ζ curve calculated from (3.7), (3.14a), (3.15)–
(3.18). The dependence of z1 on ζ is presented in figure 12(b) (curve 1). Then, using
(3.71) we find that

ln (z1 − z0) = ln
c0

ε2/3
− ln

2

I 2/3
= O(1)

for 4/3| ln ε| � O(|ζ |) < 1/ε.

Definition 2. Let us define the relative space charge density as

ρ
def
=

c+ − c−

c+
.

ρ monotonically decreases in the Q1DL from 1 to 0, and, accordingly, its derivative
∂ρ/∂y is negative and almost vanishes at y = 0, where c− is negligibly small and
ρ � 1, and in QEB, where ρ � 0. Thus, let us identify y1 with the point of minimum
of ∂ρ/∂y that is with the inflection point of ρ(y):

∂2ρ

∂y2
(y1) = 0. (3.72)

In figure 12(b) (curve 2), we plot the dependence of thus defined z1 = ε−2/3I 1/3y1 on
ζ . We note the proximity of curves 1, 2 in figure 12(b) for |ζ | � 1. We also point out
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that the difference z1 − z0 in curve 2 converges to the value 0.66 for still larger values
of −ζ. This limit corresponds to the solution of (3.72) with relative space charge
density taken from the entire transition layer solution (3.20).

Obviously, these two definitions are purely heuristic, and serve only for illustration
of the approximate (by the order of magnitude) independence of the difference z1 −z0

of ε, ζ for non-equilibrium regimes.
Summarizing, (3.67)–(3.70) yield

µ+ = lnp1 − V

[
1 + O

(
1

| ln ε|

)]
− (2 max(z0, 0))3/2I 1/2

3
, (3.73)

for the entire range of ζ from quasi-equilibrium (ζ = O(1)) to the developed
non-equilibrium space charge regime |4/3 ln ε| <O(|ζ |) <O(1/ε). Equation (3.73)
is a generalization for non-equilibrium conditions of the common continuity of
electrochemical potential of counter-ions. Note that for quasi-equilibrium (z0 < 0) it
is reduced to the usual continuity condition (3.67), whereas for the non-equilibrium
regime (z0 > 0) the last term in (3.73) is the leading-order correction to the interface
value of the counter-ion electrochemical potential.

For completeness, we reproduce the entire regular formulation of the QEB
electrodiffusion problem:

∂c

∂t
= �c, ∇ ·

(
1 − D

1 + D
∇c − c∇ϕ

)
= 0, |x| < ∞, 0 < y < 1, t > 0; (3.74a, b)

ln c + ϕ(x, 0, t) = lnp1 − V − (2 max(z0, 0))3/2I 1/2/3, (3.75)

∂c

∂y
(x, 0, t) − c(x, 0, t)

∂ϕ

∂y
(x, 0, t) = 0; (3.76)

ln c(x, 1, t) + ϕ(x, 1, t) = lnp1, (3.77)

∂c

∂y
(x, 1, t) − c(x, 1, t)

∂ϕ

∂y
(x, 1, t) = 0; (3.78)

where z0 is a solution of (3.54) with

I (x, t) = 2
∂c

∂y
(x, 0, t), (3.79)

Φ(x, t) = ϕ(x, 0, t) − ln c(x, 0, t) + ln
∂c

∂y
(x, 0, t) = ln

I (x, t)

2
− µ−(x, 0, t). (3.80)

Let us note that for z0 > O(1), substitution of (3.58), (3.80) into boundary condition
(3.75) yields to the leading order

ln c(x, 0, t) + ϕ(x, 0, t) � Φ + 4
3
ln ε − 1

3
ln I,

and

c(x, 0, t) �
(

ε
∂c

∂y
(x, 0, t)

)2/3

, (3.81)

previously obtained heuristically in Rubinstein & Zaltzman (2003).

4. Transition from quasi-equilibrium to non-equilibrium electro-osmotic slip
Reuss (1809) was the first to describe the motion of an electrolyte along a charged

surface under the influence of an applied electric field (electro-osmosis). Helmholtz
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(1879) and Smoluchowski (1914) provided its first explanation nearly a century later,
based on a heuristic analysis of the EDL valid for solids impermeable to ions.
A systematic theory of quasi-equilibrium electro-osmosis at charge selective solids
was finalized in the early 1970s by Dukhin (see Dukhin & Derjaguin 1976). Below
we employ our unified picture of the EDL undercurrent to develop such a theory,
universally valid for all regimes.

The current section is organized as follows. We begin by deriving for the range
|z0| <O(ε−2/3/ln(ε)) a universal electro-osmotic slip condition valid for all realistic
regimes except for that corresponding to the thin QE–EDL (V =O(1)). We show next
that for a thick QE–EDL this condition is reduced to the limiting quasi-equilibrium
one:

u(x, 0, t) = 2 ln 2
∂µ−

∂x
(x, 0, t).

Finally, we match the obtained universal condition with the sublimiting quasi-
equilibrium one of the form

u(x, 0, t) = −2
∂µ−

∂x
(x, 0, t) ln

1 + eζq

2
, (4.1)

and explore the asymptotic limit of electro-osmotic slip in the regime of developed
non-equilibrium space charge z0 >O(1).

Let us start with the analysis of

4.1. Contribution of Q1DL ∩ QEB to slip velocity

To find the tangential velocity, we have to solve the following ‘inner’ problem

−1

2

∂

∂x

[(
∂ϕ

∂y

)2 ]
+

∂ϕ

∂x

∂2ϕ

∂y2
+

∂2u

∂y2
= 0, u|y=0 = 0, (4.2a, b)

and match its solution with the respective QEB solution. By substituting the
Q1DL ∩ QEB asymptotics (3.11a) into (4.2), we obtain

∂2

∂y2

[
u(x, y, t) + ϕ(x, y, t)

∂Φ

∂x
(x, t)

]
= 0 in Q1DL ∩ QEB. (4.3)

Equation (4.3) implies that in Q1DL ∩ QEB, the derivative ∂ [u + ϕ∂Φ/∂x] /∂y is to

the leading order a constant, which we shall denote as Ũ . Thus,

∂

∂y

[
u + ϕ

∂Φ

∂x

]
= U ′ in Q1DL ∩ QEB. (4.4)

The constant U ′ is provided by the solution of the QEB problem and is of the order
O(1) for a thin QE–EDL and of a larger order otherwise.

Let us rewrite the inner problem (4.2a, b), (4.4) in terms of ‘reduced’ velocity
U (x, y, t) defined as

U (x, y, t)
def
= u + [ϕ + V ]

∂Φ

∂x
− yU ′. (4.5)

Substitution of (4.5) into (4.2a, b) yields

−1

2

∂

∂x

[ (
∂ϕ

∂y

)2 ]
+

(
∂ϕ

∂x
− ∂Φ

∂x

)
∂2ϕ

∂y2
+

∂2U

∂y2
= 0, (4.6)

U |y=0 = 0,
∂U

∂y
= 0 in Q1DL ∩ QEB. (4.7a, b)
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We note that U is constant in Q1DL ∩ QEB. Thus, the reduced velocity is that part
of the total slip velocity which develops entirely in the EDL, without the contribution
of the ‘bulk’ electroconvective velocity developing in Q1DL ∩ QEB and equal to
yU ′ − [ϕ + V ]∂Φ/∂x.

It will be shown in due course (see (4.32)) that this latter contribution is
universally present everywhere, including the EDL, and results in the classical
Helmholtz–Smoluchowski component to the slip velocity (which may be occasionally
compensated by some other contributions, such as tangential pressure variations in
the EDL).

4.2. Contribution of EDL to slip velocity

Let us formulate the boundary-value problem for U in terms of the inner variable z.

From (3.6), (3.14a), (3.48), (3.50), we have in terms of the inner variables z = yI 1/3ε−2/3,

z0 = y0I
1/3ε−2/3 for O(ζ ) < −1:

ϕ = −V + 2

[
ln

(
y + ε

√
2

p1

)
− ln

(
ε

√
2

p1

)]
−

z∫
0

G(s, z0) ds, (4.8)

ϕx = − 1

3I

∂I

∂x
zG − ∂z0

∂x

z∫
0

∂G

∂z0

(s, z0) ds, (4.9)

∂2ϕ

∂x∂y
= − G(z, z0)

3I 2/3ε2/3

∂I

∂x
− I 1/3

ε2/3

∂G

∂z0

∂z0

∂x
− z

3I

∂G

∂z

∂I

∂x
, (4.10)

∂2ϕ

∂y2
= − 2

ε4/3
(
z + ε1/3

√
2/p1

)2
− I 2/3

ε4/3

∂G

∂z
, (4.11)

and, using (3.19), (3.54), (3.55), we conclude that

∂Φ

∂x
= − 1

3I

∂I

∂x
− ∂z0

∂x

z∫
0

∂G

∂z0

, (4.12)

where G(z, z0) is defined by (3.50).
Substitution of (4.8)–(4.11) into (4.6), (4.7) yields for U the following boundary-value

problem, z > 0:

∂2U

∂z2
=

1

3I

∂I

∂x

(
G2 − 2G

z + A
− 2z

z + A

∂G

∂z
− 2z

(z + A)2
G

)

+
∂z0

∂x

⎛⎝∂G

∂z0

[
G − 2

z + A

]
+

z∫
0

∂G

∂z0

dz

[
∂G

∂z
+

2

(z + A)2

]⎞⎠
− ∂Φ

∂x

(
∂G

∂z
+

2

(z + A)2

)
; (4.13)

U |z=0 = 0,
∂U

∂z
→ 0 for z − z0 � 1, (4.14a, b)

where

A = ε1/3I 1/3
√

2/p1.
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Then, by integrating (4.13), substituting (4.12) and collecting the terms proportional
to ∂Φ/∂x and ∂I/(3I∂x), we find

U = UΦ

∂Φ

∂x
+ UI

1

3I

∂I

∂x
for z − z0 � 1, (4.15)

with

UΦ =

∞∫
0

z∫
∞

⎛⎝ g(s, z0)

g1(0, z0)

[
2

s + A
− G(s, z0)

]
+

∞∫
s

g(p, z0)

g1(0, z0)
dp

∂

∂s

[
2

s + A
− G(s, z0)

]⎞⎠dsdz,

(4.16)

UI =

∞∫
0

z∫
∞

([
G− 2

s + A

]2

− ∂

∂s

[
G− 2

s + A

]
+

2A

s + A

[
∂G

∂s
− 1

s + A

])
dsdz+UΦ. (4.17)

Here,

g(z, z0)
def
=

∂G

∂z0

g1(z, z0)
def
=

∞∫
z

g(z, z0) dz. (4.18a, b)

Let us note that in (4.17) there is one term quadratic in G, whereas all other terms
in (4.16), (4.17) are linear in G.

In order to simplify (4.16), (4.17), we refer to the smallness of parameter
A= O(ε1/3) 	 1 which yields, taking into account (3.52a, b),

UΦ =

∞∫
0

z∫
∞

[
g

g1(0, z0)

(
2

s
− G

)
+

∂G

∂s
g1 +

2

(s + A)2

(
1

s + 1
− g1

g1(0, z0)

)]
dsdz

− 2(1 + lnA), (4.19)

UI =

∞∫
0

z∫
∞

(
G2 − 4G

z
− 2

∂G

∂s
− g[G − 2/s]

g1(0, z0)
+

[
1 − g1

g1(0, z0)

]
∂

∂s

[
G − 2

s

])
dsdz. (4.20)

Let us examine (4.15)–(4.17) for z0 	 −1. For this purpose, let us keep the leading-
order terms in the expansion of the respective integrands. Then, using thick QE–EDL
solution (3.45a), we obtain that from (3.50), (4.18a) for z0 	 −1

G(z, z0) =
2

z
− 4

√
−z0

exp(−√−z0z)

1 − exp(−2
√−z0z)

− 1

z − z0

, (4.21)

and,

g(z, z0) =
2 exp(−√−z0z)

1 − exp(−2
√−z0z)

(
1√−z0

− z
1 + exp(−2

√−z0z)

1 − exp(−2
√−z0z)

)
− 1

(z − z0)
2
. (4.22)

Integration of (4.22) yields

g1(0, z0) =
2

z0

, g1(z, z0) = − 1

z − z0

− 2√−z0

z exp(−√−z0z)

1 − exp(−2
√−z0z)

. (4.23a, b)

By substituting (4.21)–(4.23a, b) into (4.16), (4.17), keeping the leading-order terms in
the results of the integration and using (3.45b), we find:

UΦ = −2 ln 2 − ζq, UI = 6 ln 2, (4.24a, b)
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and, thus, from (4.15)

U = 2 ln 2

(
∂ ln I

∂x
− ∂Φ

∂x

)
− ζq

∂Φ

∂x
in Q1DL ∩ QEB. (4.25)

Taking into account (3.8), (3.11) and the negativity of z0, (4.25) yields the limiting
Dukhin’s type quasi-equilibrium slip (see Dukhin & Derjaguin 1976; Zholkovskij
et al. 1996)

U = 2 ln 2
∂

∂x
(ln c − ϕ) − ζq

∂Φ

∂x
in Q1DL ∩ QEB. (4.26)

By matching the slip formula (4.15) with the following quasi-equilibrium one, valid
for |ζ | =O(1) (−y0 = O(1), compare with (2.38))

U = −2 ln
1 + exp(ζq)

2

∂

∂x
(ln c − ϕ) − ζq

∂Φ

∂x
,

we obtain, using (3.42), the following composite expression for the reduced slip velocity
valid for any ζ in Q1DL ∩ QEB

U = UΦ

∂Φ

∂x
+ UI

1

3

∂ ln I

∂x
− 2 ln

(
1 + exp

[(
ζ − ln

2p1

I

)
/2

])
∂

∂x
(ln I − Φ) . (4.27)

Let us analyse in more detail this formula for the developed microscopic non-
equilibrium space charge regime (3.56)–(3.60) (1 < O(z0) < ε−2/3, 4/3| ln ε| <
O(|ζ |) < 1/ε). According to (3.21a), for 1 <O(z) <z0, the leading-order term in the
expansion of function G is

G = −
√

2(z0 − z), (4.28)

and, thus,

g = − 1√
2(z0 − z)

. (4.29)

Integrating (4.22) and keeping the leading-order terms, we find

g0 = −
√

2z0, g1 = −

√
1

2 (z0 − z)
(1 < O(z) < z0). (4.30a, b)

Then, by substituting (4.28)–(4.30a, b) into (4.5), (4.15), (4.19), (4.20) and keeping the
leading-order terms, we finally recover the extreme non-equilibrium electro-osmotic
slip formula, for 4/3| ln ε| <O(|ζ |) < 1/ε

u =
(
ζ − 4

3
ln ε

)∂Φ

∂x
−

(
ζ − 4

3
ln ε

)2

8

∂ ln I

∂x
in Q1DL ∩ QEB, (4.31)

in accord with Rubinstein et al. (2005).
Finally, in figure 13 we depict the dependence of the electro-osmotic factors UΦ,

UI on ζ. We note the change of sign of UI upon the decrease of ζ and transition
from the quasi-equilibrium to the non-equilibrium EDL.

4.3. Two-dimensional limiting electroconvection problem

We turn now to formulation of the QEB flow problem to be solved in the domain
{−∞ <x < ∞, 0 <y < 1, t > 0}. In order to return from the reduced slip velocity
(4.2) to the total one we have to specify the outer edge y1 of the EDL in (4.5)
for non-equilibrium regimes (the term yU ′ in (4.5) is negligibly small for quasi-
equilibrium regimes, z0 	 −O(1)). Based on (3.70), we identify y1 with max(0, y0).



Electro-osmotic slip and electroconvective instability 207

–30 –20 –10 0 0
ζ

0

2

4

6

8

10

UΦ

(a) (b)

–30 –20 –100
ζ

–60

–40

–20

0

UI

1

2

Figure 13. Dependence of electro-osmotic factors UΦ, UI on ζ . (a) —, UΦ versus ζ ; - - -,
quasi-equilibrium asymptotics (4.24a); (b); — UI versus ζ ; - - - 1, quasi-equilibrium asymptotics
(4.24b); - - - 2, non-equilibrium asymptotics (4.31).

This identification is, thus, an interpolation of the rigorous estimates of y1 valid for
developed non-equilibrium (z0 � 1, O(ζ ) < (4/3) ln |ε|) and quasi-equilibrium regimes
(z0 	 −1, O(ζ ) > (4/3) ln |ε|)) onto intermediate ones. Setting y = max(0, y0) in (4.5)
and using (4.27) we find

u(x, 0, t) − ε2/3I−1/3 max(0, z0)

[
∂u

∂y
(x, 0, t) +

∂ϕ

∂y
(x, 0, t)

∂Φ

∂x
(x, t)

]
= (UΦ + [−V − ϕ(x, 0, t)])

∂Φ

∂x
(x, t) +

UI

3

∂ ln I

∂x
(x, t)

− 2 ln

(
1 + exp

[(
−V − Φ(x, t) − ln

2p1

I

)/
2

])
∂

∂x
(ln I − Φ(x, t)). (4.32)

The rest of the universal limiting electroconvection formulation reads

∂c

∂t
+ Pe(v · ∇)c = �c, (4.33)

D − 1

D + 1
�c + ∇ · (c∇ϕ) = 0, (4.34)

1

Sc

∂v

∂t
= −∇p + ∇ϕ�ϕ + �v, (4.35)

∇ · v = 0, v = uî + w ĵ ; (4.36)

ln c(x, 0, t) + ϕ(x, 0, t) = lnp1 − V − (2 max(z0, 0))3/2I 1/2

3
, (4.37)

ln c(x, 1, t) + ϕ(x, 1, t) = lnp1,
∂c

∂y
− c

∂ϕ

∂y

∣∣∣∣
y=0,1

= 0, (4.38a, b)

u(x, 1, t) = 4 ln
1 + exp(−ϕ(x, 1, t))

2

∂ϕ

∂x
(x, 1, t), w|y=0,1 = 0. (4.39a, b)

Once more, the current density I (x, t), the regular potential Φ(x, t) and the electro-
osmotic factors UΦ and UI are given by, respectively, (3.79), (3.80) and (4.19), (4.20),
whereas the control parameter z0 is a solution of (3.54).
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5. Linear stability of quiescent concentration polarization in the universal
electro-osmotic formulation

It was shown in Rubinstein & Zaltzman (2000, 2001) that the non-equilibrium
electro-osmosis, induced by the extended space charge of a strongly non-equilibrium
EDL, renders the quiescent conduction unstable. Below, we employ the universal
electro-osmotic slip theory of the previous section to explore this instability, in
particular, to determine the precise critical parameter values for its onset. It is shown
that the limiting formulation analysed is free of short-wave singularity which paves
the way for the numerical study of the full nonlinear electro-osmotically driven
electroconvection problem, which is difficult for a direct numerical solution in a
realistic parameter range. Such a numerical study, including the exploration of the
overlimiting conductance phenomenon, will be the subject of our forthcoming paper.

Let us analyse the linear stability of the following quiescent concentration
polarization solution

c0(y) =
I0

2

(
y − 1

2

)
+ 1, ϕ0(y) = ln

p1 [I0/2 (y − 1/2) + 1]

(1 + I0/4)2
, (5.1a, b)

v0 = u0 î + w0 ĵ = 0, Φ0 = ln
I0p1

2 (1 + I0/4)2
(0 < y < 1), (5.2a, b)

to the regular limiting electroconvection problem (4.32)–(4.39a, b). Here, for z0 < 0,
the current density I0 = I0(V ) is given by

I0 = 4
1 − e−V/2

1 + e−V/2
, (5.3)

whereas for z0 > 0 it is found through the solution of the equations

2 ln
1 − I0/4

1 + I0/4
= −V − (2 max(z0, 0))3/2I 1/2

0

3
, (5.4)

P (z0) + 4
3
ln ε = −V − ln

I
4/3
0

(1 + I0/4)2
, (5.5)

with P (z0) given by (3.55). The linearized problem for the perturbations c1, ϕ1 and

v1 = u1 î + w1 ĵ of the solution (5.1a, b)–(5.5)

∂c1

∂t
+ Pe

I0

2
w1 = �c1 (t > 0, |x| < 0 < y < 1), (5.6)

D − 1

D + 1
�c1 + ∇ (c0∇ϕ1) +

∂

∂y

(
c1

dϕ0

dy

)
= 0, (5.7)

1

Sc

∂

∂t
�w1 = �2w1 +

∂2�ϕ1

∂x2

dϕ0

dy
− d3ϕ0

dy3

∂2ϕ1

∂x2
; (5.8)

∂c1

∂y
(x, 0, t) − c0(0)

∂ϕ1

∂y
(x, 0, t) − c1(x, 0, t)

dϕ0

dy
(0) = 0, (5.9)

c1(x, 0, t)

c0(0)
+ ϕ1(x, 0, t) = − (2 max(z0, 0))3/2

3I
1/2
0

∂c1

∂y
(x, 0, t)

− (2 max(z0, 0))1/2I
1/2
0

P ′(z0)

(
c1(x, 0, t)

c0(0)
− 8

3I0

∂c1

∂y
(x, 0, t) − ϕ1(x, 0, t)

)
, (5.10)
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∂2w1

∂y2
(x, 0, t) − dϕ0

dy
(0)

[
∂2ϕ1

∂x2
(x, 0, t) − 1

c0(0)

∂2c1

∂x2
(x, 0, t) +

2

I0

∂3c1

∂x2∂y
(x, 0, t)

])
× ε2/3 max(z0, 0)

I
1/3
0

− ∂w1

∂y
(x, 0, t) = [UΦ(z0) − V − ϕ0(0)]

×
[
∂2ϕ1

∂x2
(x, 0, t) − 1

c0(0)

∂2c1

∂x2
(x, 0, t) +

2

I0

∂3c1

∂x2∂y
(x, 0, t)

]
+ UI (z0)

+
2

3I0

∂3c1

∂x2∂y
(x, 0, t) − 2 ln

(
1 +

1 + I0/4

p1

e − V
2

)
∂2

∂x2

(
c1(x, 0, t)

c0(0)
− ϕ1(x, 0, t)

)
,

(5.11)

c1(x, 1, t)

c0(1)
+ ϕ1(x, 1, t) = 0, (5.12)

∂c1

∂y
(x, 1, t) − c0(1)

∂ϕ1

∂y
(x, 1, t) − c1(x, 1, t)

dϕ0

dy
(1) = 0, (5.13)

w1(x, 0, t) = 0, w1(x, 1, t) = 0, (5.14a, b)

∂w1

∂y
(x, 1, t) = −4 ln

p1 + I0/4 + 1

2p1

∂2ϕ1

∂x2
(x, 1, t). (5.15)

Equations (5.6)–(5.15) yield the spectral problem of the form

λξ + Pe
I0

2
ω =

d2ξ

dy2
− k2ξ (0 < y < 1), (5.16)

D − 1

D + 1

(
d2ξ

dy2
− k2ξ

)
+ c0

(
d2ψ

dy2
− k2ψ

)
+

I0

2

dψ

dy
+

d

dy

(
dϕ0

dy
ξ

)
= 0, (5.17)

d4ω

dy4
−

(
2k2 +

λ

Sc

)
d2ω

dy2
+

(
k4 +

λk2

Sc

)
ω = k2

[(
d2ψ

dy2
− k2ψ

)
dϕ0

dy
− d3ϕ0

dy3
ψ

]
, (5.18)

ξ (0)

c0(0)
+ ψ(0) = − (2 max(z0, 0))3/2

3I
1/2
0

dξ

dy
(0)

−
√

2 max(z0, 0)I 1/2
0

P ′(z0)

(
ξ (0)

c0(0)
− 8

3I0

dξ

dy
(0) − ψ(0)

)
, (5.19)

dξ

dy
(0) − c0(0)

dψ

dy
(0) − ξ (0)

dϕ0

dy
(0) = 0, (5.20)

ε2/3 max(z0, 0)

I
1/3
0

(
d2ω

dy2
(x, 0, t) + k2 dϕ0

dy
(0)

[
ψ(0) − ξ (0)

c0(0)
+

2

I0

dξ

dy
(0)

])
− dω

dy
(x, 0, t) = −k2 [UΦ(z0) − V − ϕ0(0)]

[
ψ(0) − ξ (0)

c0(0)
+

2

I0

dξ

dy
(0)

]
− UI (z0)

2k2

3I0

dξ

dy
(0) + 2k2

(
ξ (0)

c0(0)
− ψ(0)

)
ln

(
1 +

1 + I0/4

p1

exp(−V/2)

)
, (5.21)

ξ (1)

c0(1)
+ ψ(1) = 0, (5.22)
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Figure 14. Marginal stability curves (voltage V versus wavenumber k) for universal
electro-osmotic formulation for Pe= 0.5, D = 1, p1 = 4 and six values of ε: 1, −10−2; 2,
−3 × 10−3; 3, −10−3; 4, −3 × 10−4; 5, −10−4; 6, −3 × 10−6.

dξ

dy
(1) − c0(1)

dψ

dy
(1) − ξ (1)

dϕ0

dy
(1) = 0, (5.23)

ω(0) = 0, ω(1) = 0, (5.24a, b)

dω

dy
(1) = 4k2 ln

p1 + 1 + I0/4

2p1

ψ(1). (5.25)

Here ξ, ψ and ω are the Fourier transforms

ξ (y) =

∫ ∞

−∞
eikxc1(x, y) dx, (5.26)

ψ(y) =

∫ ∞

−∞
eikxϕ1(x, y) dx, (5.27)

ω(y) =

∫ ∞

−∞
eikxw1(x, y) dx, (5.28)

of the spatial factors c1, ϕ1, w1 in the representation

c1(x, y, t) = c1(x, y) eλt , (5.29)

ϕ1(x, y, t) = ϕ1(x, y) eλt (5.30)

w1(x, y, t) = w1(x, y) eλt . (5.31)

where k is the wavenumber and λ is the spectral parameter – linear growth rate
(Reλ > 0 implies instability of solution (5.6)–(5.15)).

Below are the results of a numerical solution of the spectral problem (5.16)–
(5.25). Thus, in figure 14 we present the marginal stability curves in the V/k plane
for Pe= 0.5, D = 1, p1 = 4 and six values of ε = 10−2, 3 × 10−3, 10−3, 3 × 10−4,

10−4, 3 × 10−5. It can be seen that the minimum in the Vcr versus k curve is
more pronounced the larger ε is. In figure 15, we present the ε-dependence of the
threshold Vcr for Pe=0.5, D = 1, p1 = 4 in the limiting electroconvective formulation



Electro-osmotic slip and electroconvective instability 211

10–210–310–4

ε

8

9

10

11

12

13

1

2

Vcr + 4 ln ε
3
–

Figure 15. The ε-dependence of the voltage threshold Vcr for Pe= 0.5, D = 1, p1 = 4 in:
1, – universal electro-osmotic formulation, and 2, full electroconvective formulation.
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Figure 16. The ε-dependence of the critical wavenumber kcr for Pe= 0.5, D = 1, p1 = 4 in:
1, — universal electroosmotic formulation; - - -, empirical formula (5.32), and 2, — full
electroconvective formulation; - - -, empirical formula (6.18).

(4.32)–(4.39a, b). In figure 16, we present the corresponding ε-dependence of the
critical wavenumber kc for this formulation with the same parameter values as in
previous figure, (continuous line 1), whereas dashed line 1 stands for the analytical
approximation of this dependence by the empirical formula

kcr � −0.25 − 3
4
ln ε. (5.32)

Finally, in figure 17, we present the dependence of the threshold Vcr on the relative
diffusivity D for ε = 3 × 10−5.

We conclude this section by noting that for very large wavenumbers k � 1/ε the
quiescent concentration polarization solution is stable, with perturbations decaying
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Figure 17. The voltage threshold Vcr dependence on the relative diffusivity D in the
universal electro-osmotic formulation for Pe = 0.5, p1 = 4, ε = 3 × 10−5.

as

λ � −k2, (5.33)

that is in a fashion typical of diffusion. This is the ultimate expression of the absence
of the short-wave singularity from the electro-osmotic formulation (4.32)–(4.39a, b).
Estimate (5.33) follows from the short-wave (k � 1/ε) asymptotic analysis of problem
(5.16)–(5.25) based upon defining a small parameter ω = k−1 and observing that for
ω 	 1, (5.16)–(5.25) are singularly perturbed with two boundary layers at y = 0, 1.
Straightforward asymptotic boundary-layer analysis of this problem yields for k � 1
the leading-order solution of the form:

ξ = 1 − y + O

(
1

k2

)
, ψ =

1 − D

(1 + D) c0(y)
(1 − y) + O

(
1

k2

)
,

ω = O(1) e−y/k, λ � −k2 + O

(
1

k2

)
(0 < y < 1).

6. Linear stability of quiescent concentration polarization in the full
electroconvective formulation

In this section we deal with linear stability analysis of the quiescent concentration
polarization solution in the full electroconvective formulation (2.1)–(2.5), (2.8)–(2.13).
In order to simplify the full formulation (2.1)–(2.5), (2.8)–(2.13) and to avoid the
detailed study of the double electric layer at the ‘enriched’ anodic membrane’s surface
(y =1) we assume there local electroneutrality with local equilibrium and quasi-
equilibrium electro-osmotic slip of the kind (4.1) which yields boundary conditions of
the form:

µ+(x, 1, t) = lnp1, µ−
y (x, 1, t) = 0, ϕ(x, 1, t) =

lnp1 − µ−(x, 1, t)

2
, (6.1a–c)

u(x, 1, t) = −2 ln

√
p1 + eµ−(x,1,t)/2

2
√

p1

µ−
x (x, 1, t), w(x, 1, t) = 0. (6.2a, b)
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Here, µ+ and µ− are the cationic and anionic electrochemical potentials. Conditions
(6.1a, b) imply local equilibrium for cations at the membrane–solution interface and
impermeability of the latter for anions, whereas (6.1c) and (6.2a) imply, respectively,
the local electroneutrality and the limiting quasi-equilibrium electroosmotic slip.

The quiescent steady-state concentration polarization solution µ
±
0 , ϕ0, v0, p0

whose stability we are about to study is found numerically from the following
one-dimensional boundary-value problem:

d

dy

(
exp(µ+

0 − ϕ0)
dµ+

0

dy

)
= 0, ε2 d2ϕ0

dy2
= exp(µ−

0 + ϕ0) − exp(µ+
0 − ϕ0) (0 <y < 1),

µ+
0 (0) = lnp1 − V, ϕ0(0) = −V,

µ+
0 (1) = lnp1, ϕ0(1) = 1

2
ln

⎛⎝p1

1∫
0

exp(ϕ0) dy

⎞⎠ ,

µ−
0 (y) = µ+

0 (1) − 2ϕ0(1), v0(y) = 0, p0(y) =
1

2

(
dϕ0

dy

)2

+ const.

The linearized problem for perturbations µ
±
1 , ϕ1, v1 = u1 î + w1 ĵ is

∂

∂t
(µ+

1 − ϕ1) + Pew1

d

dy
(µ+

0 − ϕ0) =
D + 1

2

[
�µ+

1 + (µ+
1 − ϕ1)

d2µ+
0

dy2

+

(
∂

∂y
(µ+

1 − ϕ1) + (µ+
1 − ϕ1)

d

dy
(µ+

0 − ϕ0)

)
dµ+

0

dy
+

∂µ+
1

∂y

d

dy
(µ+

0 − ϕ0)

]
, (6.3)

∂

∂t
(µ−

1 + ϕ1) + Pew1

dϕ0

dy
=

D + 1

2D

[
�µ−

1 +
dϕ0

dy

∂µ−
1

∂y

]
, (6.4)

ε2�ϕ1 = exp(µ−
0 + ϕ0)(µ

−
1 + ϕ1) − exp(µ+

0 − ϕ0)(µ
+
1 − ϕ1), (6.5)

1

Sc

∂�w1

∂t
= �2w1 +

∂2�ϕ1

∂x2

dϕ0

dy
− d3ϕ0

dy3

∂2ϕ1

∂x2
, (6.6)

µ+
1

∣∣
y=0,1

= 0,
∂µ−

1

∂y

∣∣∣∣
y=0,1

= 0, ϕ1|y=0 = 0, (6.7a–c)

(2ϕ1 + µ−
1 )|y=1 = 0, w1|y=0,1 = 0,

∂w1

∂y

∣∣∣∣
y=0

= 0, (6.8a–c)

∂w1

∂y

∣∣∣∣
y=1

= 2 ln

√
p1 + exp(−µ−

0 (1)/2)

2
√

p1

∂2µ−
1

∂x2
(x, 1, t). (6.9)

Equations (6.3)–(6.9) yield a spectral problem in the form

2Pe

D + 1
W

d

dy
(µ+

0 − ϕ0) =
d2M+

dy2
− k2M+ +

dµ+
0

dy

d

dy
(M+ − Ψ ) +

d

dy
(µ+

0 − ϕ0)

× dM+

dy
−

(
λ
D + 1

2D
− dµ+

0

dy

d

dy
(µ+

0 − ϕ0) − d2µ+′′
0

dy2

)
(M+ − Ψ ), (6.10)
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2D

D + 1
PeW

dϕ0

dy
=

d2M−

dy2
− k2M− +

dϕ0

dy

dM−

dy
− λ(M− + Ψ ), (6.11)

ε2

(
d2Ψ

dy2
− k2Ψ

)
= exp(µ−

0 + ϕ0)(M
− + Ψ ) − exp(µ+

0 − ϕ0)(M
+ − Ψ ), (6.12)

1

k2

d4W

dy4
−

(
2 +

λ

Sck2

)
d2W

dy2
+

(
k2 +

λ

Sc

)
W =

(
d2Ψ

dy2
− k2Ψ

)
dϕ0

dy
−Ψ

d3ϕ0

dy3
, (6.13)

M+|y=0,1 = 0,
d

dy
M−

∣∣∣∣
y=0,1

= 0, Ψ |y=0 = 0, (6.14a–c)

2Ψ (1) + M−(1) = 0, W |y=0,1 = 0,
dW

dy
(0) = 0, (6.15a, b)

dW

dy
(1) + 2 ln

√
p1 + exp (−µ−

0 (1)/2)

2
√

p1

k2M−(1) = 0. (6.16)

Here, Ψ (y, k), M±(y, k) W (y, k) are the Fourier transforms of the spacial factors of
perturbations of the electric potential, ionic electrochemical potentials and normal
velocity, with k and λ being the wavenumber and linear growth rate, respectively,
equivalent to those in (5.26)–(5.31).

We start with the analysis of the short-wave asymptotic behaviour (k � 1/ε) of λ
in the problem (6.10)–(6.16) by considering asymptotic expansions of the form:

M± = M
±
0 (y) + O

(
1

k2

)
, Ψ = Ψ0(y) +

Ψ1(y)

k2
+ O

(
1

k4

)
,

W = W0(y) + O

(
1

k2

)
, λ = λ0k

2 + λ1

D + 1

2D
+ O

(
1

k2

)
.

By substituting these expansions into the spectral problem (6.10)–(6.16), we find that
a non-trivial solution to the leading-order problem exists only if

λ0 = − 2

D + 1
. (6.17)

The corresponding leading-order solution is

M−
0 (y) = 0, Ψ0(y) = 0, W0(y) = 0, Ψ1(y) = −exp(µ−

0 + ϕ0)

ε2
M+

0 ,

whereas λ1 and M+
0 (y) are obtained from the solution of the following eigenvalue

problem

d2M+
0

dy2
+

dM+
0

dy

d

dy

(
2µ+

0 − ϕ0

)
+

[
dµ+

0

dy

d

dy

(
µ+

0 − ϕ0

)
+

exp(µ−
0 + ϕ0)

ε2
− λ1

]
M+

0 = 0,

M+
0 |y=0,1 = 0.

Equation (6.17) implies once more that for very large wavenumbers, k � 1/ε, the
quiescent concentration polarization solution is stable with perturbations decaying
at a rate proportional to k2, typical of diffusion. Below we present the results of a
numerical solution of the spectral problem (6.10)–(6.16). Thus, in figure 18 we present
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Figure 18. Marginal stability curves (voltage V versus wavenumber k) for the full
electroconvective formulation for Pe= 0.5, D = 1, p1 = 4 and six values of ε: 1, 10−2; 2,
3 × 10−3; 3, 10−3; 4, 3 × 10−4; 5, 10−4; 6, 3 × 10−6.
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Figure 19. Comparison of marginal stability curves for the universal electroosmotic
formulation (continuous lines) and the full electroconvective formulation (dashed lines) for
Pe = 0.5,D = 1 and three values of ε: 1, 3 × 10−3; 2, 3 × 10−4; 3, 3 × 10−6.

the marginal stability curves in the V/k plane for Pe= 0.5, D =1, p1 = 4 and six
values of ε = 10−2, 3 × 10−3, 10−3, 3 × 10−4, 10−4, 3 × 10−5. It can be seen that the
minimum in the Vcr versus k curve is more pronounced the larger ε is. In figure 19, we
compare the marginal V/k curve from figure 14 and 18 with ε = 3 × 10−3, 3 × 10−4,

3 × 10−5. We note the close agreement between the marginal stability curve in the full
formulation with ε = 3 × 10−5 and that in the universal electro-osmotic formulation.

The ε-dependence of the threshold Vcr and the critical wavenumber kc are presented
in figures 15, 16 (lines 2), respectively, for Pe =0.5, D =1, p1 = 4. Figure 16 shows
the analytical fit of the critical wavenumber kc by the expression (dashed line 2):

kc = − 3
4
ln ε − 1

2
. (6.18)
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Figure 20. Sketch of a test vortex.

We note again that for small ε, the threshold values of the voltage Vcr and the critical
wavenumber kc closely agree in both formulations.

7. Instability mechanism
The essence of the described non-equilibrium electro-osmotic instability is rooted in

the following peculiarity of the non-equilibrium space charge compared to that of the
quasi-equilibrium EDL (see Appendix B). The total charge of the latter decreases upon
the increase of the interface bulk concentration and so does its related space charge
density (see (B 1), Appendix B). As opposed to this, the total charge of non-equilibrium
EDL is essentially constant (see (B 2)). The extent of the non-equilibrium EDL is
governed by the interface current density with interface concentration essentially zero,
(3.81).

Given these basic features of the space charge, let us consider an accidental
macroscopic ‘test’ vortex superimposed upon the basic quiescent concentration
polarization steady state with electroneutral concentration decreasing towards the
interface (see figure 20). The portion of this vortex descending towards the depleted
wall brings the high bulk concentration to the interface, whereas the ascending part of
the vortex does the opposite and brings the low interface concentration towards the
bulk. For QE–EDL, this yields the decrease of the space charge density in the EDL
at the ‘descending’ side of the flow and, correspondingly, decrease of the pressure.
By the same mechanism, the pressure at the ascending side increases, thus, creating a
lateral pressure drop which tends to decelerate the rotation. This is not so for non-
equilibrium conditions. In this case, the increase of concentration in the descending
part of the vortex, with the interface concentration remaining low, yields the increase
of the interface current density. This, in turn, leads to compression of the extended
space charge with its total value remaining unchanged. This results in the increase of
the space charge density and the related increase of pressure (at the ascending side
of the vortex, the opposite happens). The related lateral pressure drop, thus, tends to
accelerate the rotation in the vortex which is the essence of the positive feedback in
the described non-equilibrium electro-osmotic instability. This is shown in figure 21 in
which we present the y- dependence of the lateral force terms in the perturbed Stokes
equation (2.4) for the lateral velocity u1, namely, the x-component of the negative
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Figure 21. (a)–(d) The dependence of −∂p1/∂x (continuous lines) and fx (dashed lines) on
y for (a) V = 1, (b) V = 10, (c) V = 11, (d) V = 20, and ε = 10−3, Pe = 0.5, p1 = 4, D = 1.
(e) The dependence of the total lateral electric force Fx in the EDL on the voltage V for
ε = 10−3, Pe = 0.5, p1 = 4, D = 1.

pressure perturbation gradient

−∂p1

∂x
= − ∂2ϕ1

∂x∂y

dϕ0

dy

and the x-component of the electric force perturbation

fx
def
=

∂ϕ1

∂x

d2ϕ0

dy2
,

as determined from the solution of the linearized problem (6.10)–(6.16):

−∂p1

∂x
= ik

dϕ0

dy

∂Ψ

∂y
e−ikx eλt , fx = −ik

d2ϕ0

dy2
Ψ e−ikx eλt .

Thus, in figures 21(a–d ) we present the dependence of −∂p1/∂x and fx on y in the
EDL calculated at the rotation axis x = π/2 of a counterclockwise rotating vortex for
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ε =10−3, k = 1, D = 1, Pe= 0.5, t = 0 and a sequence of voltages V = 1, 10, 11, 20.
In this example, the transition from stabilization to destabilization (figure 21c,d ) by
the local forces in the electric double layer occurs between V = 10 and V =11. This is
further illustrated in figure 21(e) in which we plot the overall lateral electric force Fx

defined by (2.33) (equal, by (2.36), to minus the total lateral pressure gradient, −Px)
as a function of the applied voltage V . We note that this force indeed changes sign in
the range 10 < V < 11 upon the change of direction in which the local forces in the
electric double layer are predominantly acting.

In kinematic terms, that is in terms of the electro-osmotic slip rather than force
balance, the mechanism of the described instability is as follows. The increase of
the interface concentration in the descending portion of the aforementioned seed
vortex (amounting to increase of the local current density) results by the non-
equilibrium slip condition (2.41) in a positive slip velocity, that is accelerated rotation.
As opposed to this, owing to the opposite sign of the electro-osmotic factor in the
quasi-equilibrium slip conditions (2.37)–(2.39), increase of the interface concentration
results in a negative slip velocity that is a negative feedback and stability.

Appendix A. Calculation of parameter y0 for O(|ζ |) < 4
3
| ln ε|

In the case of thin QE–EDL, the control parameter r0 (or y0) may be calculated by
a straightforward integration of (3.23) over the interval 0 < r < ∞ in the form:

∞∫
0

2dR√
R2 − 4r0

dr = −
∞∫

0

R dr. (A 1)

Equation (A 1) yields

2 ln(−R +
√

R2 + 4)
∣∣r=∞
r=0

= −ζq(x),

and using (3.23) and boundary condition (3.24) we find that

2 ln 2 − 2 ln 2

√
2p1

r0

I−2/3 = −ζq(x),

where ζq(x) is the quasi-equilibrium ζ -potential defined by (3.39).
Using the same integration in the case of thick QE–EDL, we show that the

contribution of the higher-order terms in the composite thick QE–EDL solution
is negligible in the overall potential balance. Indeed, substituting the QE–EDL
component of the composite solution (3.45a, b) into the overall potential drop across
QE–EDL (3.39) yields

∞∫
0

(
Q(r/

√
r0)√

r0

+
2

r
+ R(r)

)
dr = ζq(x).

Here Q(q), given by (3.26), and R(r), given by (3.30), are, respectively, the inner and
outer components of the composite thick QE–EDL solution. Multiplication of (3.27)
by dQ/dq followed by integration over the interval (a, b) yields

b∫
a

Q(r/
√

r0)√
r0

dr = −2 ln(|Q(r/
√

r0)|)|ba for any 0 < a < b. (A 2)
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Similar integration of (3.23) yields

b∫
a

R dr = − 2 ln(|R| +
√

R2 + 4)
∣∣∣b
a
. (A 3)

Superposition of (A 2) and (A 3) yields

b∫
a

(
Q(r/

√
r0)√

r0

+
2

r
+ R(r)

)
dr = −2 ln (|Q(r/

√
r0)| r[|R| +

√
R2 + 4])

∣∣∣b
a
. (A 4)

Substituting the limits a = 0 and b = ∞ into (A 4) and using (3.26), (3.31) we obtain

∞∫
0

(
Q(r/

√
r0)√

r0

+
2

r
+ R(r)

)
dr = ln

r0I
2/3

2p1

. (A 5)

Finally, equating the left-hand side of (A 5) to −ζq(x), we recover (3.46) for the
control parameter y0. Thus, in spite of the approximate formula (3.45b) failing to
hold point-wise for ζ = −O(1), it still provides the exact expression for y0 for all
values of ζ -potential in the range O(1) � |ζ | < (4/3)| ln ε|.

Appendix B. Relation between space charge and parameter y0 (z0)
Let us define the overall charge in Q1DL as

Σ
def
=

∞∫
0

(c+ − c−) dz = −I 1/3ε4/3F (0)

and analyse its relation to parameter y0 (or z0) for all regimes of EDL. Equations
(3.38), (3.45b) yield

Σ =
ε√
2p1

(y0I + 2p1) = ε

√
2

p1

(p1 − c(x, 0, t)) for O(|ζ |) < 4
3
| ln ε|. (B 1)

To leading order, (3.48) and (3.50) for F yield y0 = O(ε2/3) for O(|ζ |) = (4/3)| ln ε|
and, thus,

Σ � ε
√

2p1. (B 2)

Taking into account the next-order term in the expansion of F, ((C 5) in
Appendix C), we retrieve (B 1). In the case of non-equilibrium space charge zone
(O(|ζ |) > (4/3)| ln ε|) (3.56) and (3.61) yield

Σ = ε
√

2p1 + y0I =
ε√
2p1

[
(y0I + 2p1) + O

(
y2

0

)]
.

Thus, (B 1) holds for all realistic ζ ( O(|ζ |) < 1/ε. Let us note that for 1/ε >O(|ζ |) > 1
and, respectively, O(|y0|) < 1, (B 2) holds, that is the total charge reaches semi-
saturation (for still large −ζ = O (1/ε) it will increase further). By integrating the
Poissons equation (3.5b) in the EDL, we obtain

y1∫
0

y(c+ − c−) dy = ε2
[

− ζ − 2
3
ln ε − ln(z1 − z0)

]
, (B 3)
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where y1(z1) is the outer edge defined in § 3.3.2 by Definitions 1 or 2. By using (3.70),
and defining the ‘centre of charge’ in the EDL as

Yρ
def
=

y1∫
0

y(c+ − c−) dy

Σ
,

and using (B 3), we find

Yρ � ε

[
−

ζ + 2
3
ln ε

√
2p1

]
, (B 4)

for 1/ε > O(|ζ |) > (2/3)| ln ε|. Equation (B 4) implies that the ‘centre of charge’ is
moving away from the membrane surface with the increase of |ζ |.

Appendix C. Higher-order terms in the composite Q1DL solution for the
critical case z0 = O(1), ζ =O( 4

3
ln ε).

Let us rewrite the problem (3.15), (3.17) in terms of the inner thin QE–EDL
variables q, Q defined by (3.29a, b)

d2Q̃

dq2
− 1

2
Q̃3 + z0ε

2/3Q̃ − ε(qQ̃ + 1) = 0 (0 < q < ∞), (C 1)

(
dQ̃

dq
+ 1

2
Q̃2

)∣∣∣∣∣
q=0

= 2p1I
−2/3 + z0ε

2/3 (Q̃|q=∞ = 0). (C 2a, b)

Let us seek a solution to the problem (C 1)–(C 2a, b) in the form

Q̃ = Q + ε2/3Q(1) + · · · .
The leading-order thin QE–EDL solution Q(q) is given by (3.26).

We look for the outer TEDL solution F̃ (z) to the problem (3.15)–(3.18). Matching
with the thin QE–EDL solution yields

F̃ (z) = −2

z
+ G(z) + εaF (1)(z) + · · · .

Here, G(z) is a solution to the leading-order TEDL problem (3.51), (3.52a, b). The

Q1DL solution is a composition of ε−1/3Q̃
(
zε−1/3

)
(see (3.29a, b)) and F̃ (z).

The next-order inner thin QE–EDL problem is

d2Q(1)

dq2
=

6

(q + I 1/3
√

2/p1)2
Q(1) +

2z0

q + I 1/3
√

2/p1

(0 < q < ∞), (C 3)

(
dQ(1)

dq
−

√
2p1Q

(1)

)∣∣∣∣
z̃=0

= z0, Q(1)(∞) = 0. (C 4a, b)

Matching of the solution Q(1) to the thin QE–EDL problem (C 3), (C 4a, b) with the

outer TEDL solution F̃ (z) yields

Q(1)(q) = −
√

2

3p
3/2
1

z0

(q + I 1/3
√

2/p1)2
− z0

3
(q + I 1/3

√
2/p1), (C 5)
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and

α = 1
3
, F̃ (z) = −2

z
+ G(z) + ε1/3

(
2

z2
I 1/3

√
2

p1

+ G(1)(z)

)
+ · · · ,

where G(1)(z) is the regular portion of the next-order term of the outer TEDL solution
F (1)(z). G(1)(z) is a bounded solution to the following equation holding for 0 < z < ∞

d2G(1)

dz2
= 3

2
G(1)

(
G − 2

z

)2

+3I 1/3

√
2

p1

1

z2

(
G2 − 4

z
G

)
+(z−z0)

(
G(1) +

2

z2
I 1/3

√
2

p1

)
.

Boundedness of G(1)(z) yields the expansion

G(1)(z) =

⎧⎨⎩−z0

3
I 1/3

√
2/p1 + O(z), 0 < z 	 1;

−2I 1/3
√

2/p1[z(z − z0)]
−1 + O(z−3), z � 1.

Thus, by composing the inner thin QE–EDL solution

Q̃
( z

ε1/3

)
= − 2

z/ε1/3 + I 1/3
√

2/p1

−
√

2z0/ε
2/3

3p
3/2
1

(
z/ε1/3 + I 1/3

√
2/p1

)2

− z0ε
2/3

3

(
z

ε1/3
+ I 1/3

√
2

p1

)
+ · · ·

with the outer TEDL solution

F̃ (z) = −2

z
+ G(z) + ε1/3

(
2

z2
I 1/3

√
2

p1

+ G(1)(z)

)
+ · · ·

and keeping the next-order corrections in the overall composite solution (3.48), we
find

F(0) + ε1/3F(1)(z) = − 2

z + ε1/3I 1/3
√

2/p1

+ G(z) + ε1/3G(1)(z).

Contribution of higher-order corrections to this composite solution is of the order of
O(ε1/3).

Appendix D. Glossary of electrochemical terms
Anion: negative ion.
Bulk electroconvection: electroconvection due to the action of Coulombic forces

on a macroscopic scale, as opposed to electro-osmosis, due to the action of the same
forces on the Debye length scale of the EDL.

Cation: positive ion.
Concentration polarization (CP): an electrochemical term for a complex of effects

related to the formation, under the passage of a transversal electric current, of
concentration gradients in electrolyte layers adjacent to a permselective interface (ion
exchange membranes, electrode).

Diffusion layer: the part of a viscous boundary layer in which the transversal
solute transport is diffusion dominated. In physicochemical applications, the diffusion
layer is often modelled as the Nernst film unstirred layer, that is a stagnant fluid
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layer, flanked by the solid on one side and the stirred bulk on the other, across which
the solute is transferred by diffusion only.

Electric double layer (EDL): a physicochemical term for the boundary layer
associated with a small parameter (squared dimensionless Debye length) in the Poisson
equation in an electrodiffusional system.

Quasi-equilibrium EDL: the EDL in which the exponential Boltzmann relation
holds between the ionic concentration and the electric potential.

EDL polarization: effects of distortion of EDL by the external lateral parameter
variation.

Electroconvection (EC): flow of a liquid electrolyte induced by the action of
Coulombic forces.

Electrodialysis (ED): desalination and ion separation process, employing ion
exchange membrane. The central component of ED is a plain parallel cell formed by
anion and cation exchange membranes about 0.1 cm apart. An electrolyte solution is
passed through the ED cell while an electric field, is applied transversally from the
anion to the cation exchange membranes. Under the action of this field anions and
cations migrate towards the respective membranes and leave the cell through them.
As a result, the electrolyte concentration at the exit from the cell is reduced compared
to that at the entrance.

Electrodiffusion: diffusion of charged particles, combined with their migration in
the electric field.

Electrokinetic phenomena: the EDL related flow phenomena, such as electro-
osmosis, streaming potential, electrophoresis and sedimentation potential.

Electrolyte, strong: a solution in which the solute (dissolved component) is virtually
completely dissociated into cations and anions.

Electro-Osmosis: prototypical electrokinetic effect: generation of a fluid slip due
to the action of a lateral Coulombic electric force in the EDL.

Ion exchange membrane: polymer films preferentially permeable to ions of a certain
sign. Thus the cation exchange membranes (C-membranes) are practically exclusively
permeable only to cations, whereas the anion exchange membrane (A-membrane) are
so to anions.

Local electroneutrality approximation: approximate local balance of positive and
negative charge carrier concentrations in a macroscopic electrodiffusional system
outside the EDL. Mathematically, a property of the outer solution in a singularly
perturbed electrodiffusional system with a small parameter in the Poisson equation.

Overlimiting conductance: steady-state passage of an electric current higher than
the so-called limiting value through an ion exchange membrane. The following three
regions are typically distinguishable in the voltage–current (VC) relation (polarization
curve) of an ion exchange membrane (figure 22): the low electric Ohmic region I is
followed by a plateau at the limiting current (region II, more pronounced at cation
exchange membranes); inflection of the VC curve at the plateau is followed by
the overlimiting region III. Transition to region III is accompanied by a threshold
appearance of a low-frequency excess electric noise, whose amplitude increases with
the distance from the threshold and may reach up to a few per cent of the respective
mean value. The mechanisms of the overlimiting conductance and its accompanying
excess electric noise remained unclear for a long time. It has been shown conclusively
that no such mechanisms as loss of membrane perm-selectivity at high voltage or the
appearance of additional charge carriers (“water splitting”) are responsible for these
phenomena at C-membranes (see Frillete 1957; Block & Kitchener 1966; Simons
1979a, b; Rubinstein et al. 1984). (This is also true for A-membranes, although there
the aforementioned overlimiting pattern is obscured because most anion exchange
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Figure 22. Sketch of a typical voltage/current curve of a cation-exchange membrane.

membranes intensely ‘split water’ in the course of concentration polarization owing to
a particular catalytic surface reaction (Simons 1979a, b; Rubinstein et al. 1984). There
are a number of indications that the overlimiting behaviour of the C-membranes is
associated with some kind of convective mixing that develops spontaneously in the
depleted diffusion layer at the advanced stage of CP (see Block & Kitchener 1966;
Lifson, Gavish & Reich 1977; Reich, Gavish & Lifson 1978; Li, Fang & Green
1983). This has been finally confirmed by a straightforward experimental finding: if
the depleted liquid diffusion layer is replaced by a gel by a gel, a plateau is reached
at saturation, and the excess electric noise disappears (Maletzki et al. 1992). It was
suggested that gravitational convection, brought about by the density gradients due
to CP, may destroy the unstirred layer (Lifson et al. 1977; Reich et al. 1978). It
should, however, be remembered that gravitational instability of a laminar sublayer
at a smooth solid/liquid interface in a well-mixed bulk flow may occur only upon the
fulfilment of quite general hydrodynamic conditions. Whatever the nature of the bulk
flow, laminar or turbulent, natural or forced, gravitational instability will destroy an
already existing horizontal diffusion layer with a positive upward density gradient
(unstable stratification) only if the respective Rayleigh number is above a critical value
which is larger than 1000. For an aqueous, 200 µm, or less, thick diffusion layer of a
0.01 or 0.1 normal NaCl solution, the Rayleigh number is 11.6 and 116, respectively,
that is at least an order of magnitude below the instability threshold. On the other
hand, overlimiting conductance is also observed for a stable density stratification of
the depleted diffusion layer (Rubinstein et al. 1988, 2002; Maletzki et al. 1992; Belova
et al. 2006). Electroconvection was suggested as an alternative mechanism drawing
together the overlimiting phenomena at C-membranes (see Dukhin 1991; Rubinstein
1991; Maletzki et al. 1992, Rubinstein, Zaltzman & Kedem 1997).

Perm selectivity: selective permeability för charges of a given sign.
ζ -potential: electric potential drop between the non-slip surface at the solid/liquid

interface and the outer edge of the EDL.
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